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Chapter 6

PROBABILITY

6.1 Introduction

Probability theory is a field of mathematics that

can be said to have been born in the year 1654 when the French

mathematicians Blaise Pascal and Pierre de Fermat started to

correspond on some problems related to games of chance. Since

then many mathematicians have contributed to the development of

probability theory; for instance, Christian Huygens, Jacob

Bernoulli, Abraham de Moivre and Pierre Simon De Laplace.

(Consult an encyclopedia to find out more about these men and

thpir contributions to probability theory.)

It is interesting to note that probability theory did

not get a well-organized mathematical foundation until 1933

when the Russian mathematician A. N. Kblmogorov published a

famous book on probability in which he showed that probability

theory could be based on set theory. Currently there is great

interest in this field since probability is of fundamental

importance in such areas as statistics, physical science,

technology, social science, administration, predicting election

results, life insurance, genetics and in fact wherever analysis

of data is used.

We have already had some contact with probability theory.

In this chapter we shall build upon this, and extend this



theory. In later courses we shall frequently return to

continue our study of probability.

6.2 Outcome Set and Events

In Section 6.1 it was stated that Nolmogorov showed

that probability may be based on set theory. We will use

ideas and notation from set theory in describing situations

where we can record and analyze the result of some action or

observation. For examplelwe might observe a basketball player

taking shots from the foul-line. This activity may be called

an experiment with (basket, no basket) as the outcome set.

Each shot is called a trial and each member of the outcome set

is called an outcome. In this experiment basket and no basket

are outcomes. Some texts use sample space, and sample point

instead of outcome set and outcome.

In this chapter we will consider only experiments with

a finite number of outcomes, but subsequent study of probability

requires the idea of infinite outcome sets. We will use the

symbol S to represent an outcome set.

Definition 1. If al, a._no *ego are outcomes of an

experiment then

S. el, as, ... an)

is called an outcome set of the experiment.

There may he more than one suitable outcome set for an

experiment.

Following are some examples of experiments and suitable
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outcome sets that contain two outcomes. In Example 3 you

must discover how many outcomes there are.

Example 1. Tossing a coin; S = (Heads, Tails)

Figure 6.1

Example 2. Tossing a thumbtack; S = (Up, Down).

Figure 6.2

Example 3. A peripatetic bug takes walks on the edges of a

bug cube as follows:

(a) He always starts at A and flies

back to A after each walk.

Each walk is exactly edges long.

(c) He sometimes traverses the same

edge 2 or 3 times in the same walk.

Figure 6.3

Questions. (1) List each possible trip by writing the vertices



(2) Which vertices are possible destinations for

a trip? (E.g. H is the destination of BCH.)

(3) Let each trip be a trial and each destination

an outcome. At each vertex, except the last,

there are three choices for continuing the

trip, each of the 3 edges meeting there.

Which outcomes do you think are most likely?

Why?

Following are two examples of outcome sets with more than

two outcomes and representations of these outcome sets as

sets of points. In Example 6 you will perform an experiment.

Example 4. Tossing a die; S = (1,2, 3,4,5,6).

Figure 6.4

Example 5. Receiving a letter grade; S = (F, B,

Figure 6.5

Exam le 6. Matching Cards.

(a) One or two players, two bridge decks, a



(b) Each player shuffles his deck, turns his

deck back-up, turns the top card over and

places it face-up on the table.

(c) If the cards match (see Figure 6.6) make a

tally. Continue through the deck, card for

card.

Match

vv

No Match

Figure 6.6

(d) After comparing the two decks, card for

card, record the number of matches.

(e) Let each performance of steps b, c and d in

sequence be a trial. Let the number of

matches for each trial be an outcome. Repeat,

the trials until five have been performed.

Number of Tallies Number of
Matches Tallies

' Table 6.1

Questions. ( Record your results for each experiment in a



(2) Repeat the whole experiment using just the

two sets of 13 hearts. Repeat with the first

spades; also the first 3 clubs (i.e. A, 2, 3).

(3) Did the number of cards seem to influence the

results?

The next two examples have outcome sets which are

Cartesian products. The Cartesian product, A x B, of A and

B is the set of all ordered pairs (a, b) where a E A and

b E B,

A x B ((a, b): a E A and b E B).

Example 7. Tossing a dime and a cent; S = ((H,H),(H,T),(T,H),(T,T)),

or equivalently (H,T) x (H,T)

(cent)

H

This point is (T,H) for
the outcome dime tail,

,...cent head.
kt)

T (dime)

Figure 6.7

If you were interested in the nuMber of heads, a suitable

outcome set would be: (0 heads,- lilead, 2 heads)

Question. If each outcome' in ((H,B), (H,T), (T,H), (T,T))

were,equally likely, which of the, events 0 heads,

'i'head,'.or 2 heads would be most likely?

Ftcsap le 8. Tossing a pair of dice, one red and one ,green;

0.''''12 52 6) x-(1, 2-3, 4, 5 :8).



(green die) 6

5

4
This point is

3- 0 (5,3) for red
die 5, green

2- die 3.

2 3 4 5 6 red die)

RED

6

Figure 6.8

Red die Green die Outcome Sums
GREEN

1
1,2
1,3
1,4 5

1,1 2

1
2

1 5 6,
1, 6 7
2,1
2,2

3
2,1

4
5 6

2, 5

2,6

1

3

1
2

-5
6

5
6

3,1 4
3, 2
3, 3 6
3, 4
3, 5

4:2
9
54,2 6

4,3
4, 4 8.
4,5 9
4,6 10
5,1 6
5, 2

5,3
5,

5,
5, 5_

6
6,1

21 6,
2

z
5
6

Tree diagram foi-.die tossing experiment
Figure 6.9

6, 3

6, 5
6; 6

10
11

9
10.

11
12



Instead of the outcome set of Example 8, we could

consider the outcome set to be the set of sums of the numbers

of dots on the upper faces of the dice. E.G. (5,3) in Example

8 would correspond to the sum 8 in the new outcome set.

In this case a suitable outcome set would be:

S = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.)

Notice, however, that the outcome set first used in Example 8

gives more detailed information.

Question. If each ordered pair in the first outcome set of

Example 8 (i.e. (1,2,3,4,5,6) x (1,2,3,4,5,6))

is equally likely, which sum do you think will be

most likely in the second outcome set (i.e. the,

set of sums)?

Example 9. Tossing 3 coins.

First coin Second coin Third coin outcomes

'HHH

HHT

HTH

HTT

THH

THT

TTH

TTT

Figure 600'

This example again illustrates a way, of peertraYing an

outcome set with a tree diagrasi.



It is also possible to graph the outcome set of Example

8 in 3 dimensions as shown in Figure 6.11.
HHT

Activity. Join the points representing the outcomes in the

event "exactly 2 heads" by line segements.

In Examples 1 to 9 you have seen descriptions of types

of experiments and suitable outcome sets. Certain subsets of

outcome sets are of interest in probability theory. In Example

8, one such subset is the set,

E = A(1,6), (2,5), (3,4), (4,3), (5,2), (6,1))

Question. Howcould you describe the event E (above) with one

simple sentence?

Each subset, Aq of an outcome set, S, is called an event.

Definition 2. Let. S be an outcome set. Then Ais an event

if and only if Aic S, or "equivalently,

A E +9 (s), where S (s) is the power set

(set of all subsets) of S.
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Question. Is S a subset of S? Is 0 a subset of 8?

Are S and 0 events?

The power set of S, where S = (H,T), is:

P(S) = (0, (H), (T), (H,T))

Question. List the events in the power set of S where

S = (0, 1, 2).

(Hint: There should be 28 or 8 events in (PM.)

Definition 3. A singleton, ie 4n event that contains

exactly 1 outcome.

Question. How many singletons are there in fo(S) where

S = (H,T)?

The next two examples show how you can use the graph of

an outcome set to graph an event. The graph of an event is a

subset of the points in the graph of an outcome set that

includes the event. The .vent can be shown by enclosing the

subset of points as is done in Figure 6.12.

Example 10. Spinning a spinner twice; S = (1,2,3,4) x (1,2,3,4)

Second
Spin

2' 3 4

First Spin'



Subset A is the event that the outcome of the first spin is

greater than 1. A = ((x,y): x > 1) =

((2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),

(4,3),(4,4)) Subset B is the event that the sum of the

outcomes on the first and second spin is less than 5.

B = ((x,y):x+y < 5) = [(1,1),(1,2),(1,3),(211),(2,2),(3,1))

2,2estion. Which points in Figure 6.12 are in both events A

and B? (E.g. point (3,1) is in both A and B.)

Which points are in either A or B (or both)?

You have previously encountered ideas about sets that are

useful in probability. The remainder of this section will be

devoted to relating these ideas to events.

Definition 4. A U B (read "A union B ") is the event that

contains those and only those outcomes that

belong to A or B (or both).

A U B = (x: x A or x

A U B is called the union event of A and B.

A U B
is

shaded,

Figure 6.13

15
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In Example 10 the graph of A U B is shown as a subset of

the graph of the outcome set, S = (1,2,3,4) x (1,2,3,4). The

graph of A U B includes 15 dots, 12 in event A and 6 in event B.

Question. What happened to the other 3 dots?

Exile 11. Let S be an outcome set of the experiment of

tossing two dice and observing the total

number of dots obtained,

S = (2,3,4,5,6,7,8,9,10,11,12)

Let C and D be the events:

C= (2,3,4); D= (4,5,6).

Then C U D = (2,3,4) U (4,5,6) = (2,3,4,5 6)

which, is the union event of .0 and D.

The graph of C U D can be shown as in Figure 6.14.

6,J 7 9 10 11

Figure 6.14

Definition 5. A fl B (read "A, intersection B") is the event that

contains thobejand only.those outcomes that belong

to both1;414-43,

A 6 B,_ (x': x e A,and* E B).

A n ,B 'ie .
called the intersection event of A and B.

A fl B' occurs whenever A and B both, occur.

16
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Figure 6.15 illustrates the intersection event of A and B

with Venn diagrams:

A fl B shaded

(b)

Figure 6.15

Example 12. Toss three coins and observe the number of

heads. S = (0, 1, 2, 3). Let x be the

number of heads. Let E and F be events

defined, by

E = x > 23, F = x < 2),

then E n F = fx: x = 2).

The graph in Figure 6.16 shows relations

N

Among events S, P and their intersections:

Number of, head

Figure 6.16.

3



Definition 6, A (read "the complement of A") is the event that

contains those and only those outcomes that are

in S and not in A; i.e.,

= (x :xESandxg A).

A is called the complementary event of A.

I occurs whenever A does not occur.

Figure 6.17 illustrates the complementary event of A with

a Venn diagram:

In the example; where the outcome set was a set of possible

school grades: S.= (F: Do-C: B, A.) Letthe event that you

get:a passing grade be G ='(D: C: 33: A). Then the event that

you faille the. compleMent of *G. (11. (See Figure 6.18.)

Figure 648-



Definition 7. A\B (read "A minus B") is the set of all

outcomes in S which are in A and not in B; i.e.,

A\B = (x :xEAandxfifB).

A\B is called the difference event of A and B.

Al \B occurs whenever A occurs and B does not occur.

Figure 6.19 illustrates the difference event of A and B

with a Venn diagram:

In the outcome set, of Example 11 which included the sums

of the numbers of dote on the upper faces of the dice let H

and J be the following events:

H = (2, 4, 6, 8); J = 10, 12)

The difference event is H \J (2, 4) .

amnion'. In the;Youtcome'' eat, of
. Example, 11, the set; of sums, let

,TWo,events.in,the,same;outcome no outcomes in

C _ (2, 4; 6), ,and D,:a ,(357). and-D-have ,no'ilnembers in

common.----Iri,2.otherviords.:the,intersection 'set ,Of C D is the

empty set.
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Definition 8. Two events C and D, for which C n D = 0,

are called disjoint events.

The diagrams in Figure 6.20 show two ways of portraying two

disjoint events.

Figure 6.20

The notion of disjoint events can be extended to three

or more events.

Definition 8a. Three events A4 B and C are disjoint if

and only if C =AflC =f.

Figure 6.21 illustrates three events that are dieJoint.

Figure, 6.
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Definition 8b. In general, n events AI, Ago A
n

are disjoint if and only if they are

pairwise disjoint.

Figure 622 illustrates the event E, that exactly one

of the events A, B and C occurs:

mitt' Ansn'e
...

Figure 6,22

E = (A n n 'ff) u n u (An n c)

Another event, F, is illustrated and described in Figure

6.23.

Figure 6.23

B n r u (K n n c):u (A n 1r n c)

-!>

21
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F is the event that exactly two of the events A, B and

C occur.

Questions. (a) Event E in Figure 6.22 is expressed as the

union of 3 events. Are these 3 events disjoint?

(b) Change event F in Figure 6.23 by interchanging

the role of intersection and union. Draw a

Venn diagram to illustrate this new event.

6.3 Exercises

Give roster,nameS..and a graph of snitable:OUtCome sets for

each of the following experiments.. and draw tree diagrams

for each: (A roster name is (4,-listing of outcomes

enclosed' 'braces.)

(a), ,Tossing a coin, and. a thumbtack.

(b) Choosing'a: snack, where, there is a choice of rye or

whole wheat bread, and it.,choice of honey, marmalade

or Caviar as a spread.

(c) 'Testing-:,the diameters of ball-bearings on an assembly_

line,..,:fthere'the.diameter...must be 1 ctn.' with a

greatest error of -.01 cm'. Use a number line. .: .

calibrated in hundredths. Show the intervals for

accepting' or rejecting the 'bearings.

(d) Selecting a girl friend on the,basis of hair color

(red, brown or blonde), eye color (blue or brown) and

height ki in feet with 3 possibilities, h( 5

5 <,h < >
22
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2. Describe a practical experiment for which the following

are suitable outcome sets.

(a) S = ((urn I, red bead), (urn I, blue bead), (urn I,

white bead), (urn II, black bead), (urn II, yellow

bead)).

(b)
vanilla Caramel

Walnuts

N\% Fudge
chocolate Caramel

walnuts

(c) S = (w < 100,.100 < w < 120* N > 120)

(d) S = (HHH, HHT HTH, THH, TTH, THT, HTT, TTT)

(e) S (ae, ais ao au, .ea eis eo, eu, ias les ios iu,

oa, oe, oi, ou, ua, ue, ui uo)

From a bridge deck select the cards of each suit showing

numbers 2, 3 or 4. Draw one card from the 12 selected cards.

A suitable outcome set is:

S = (H2, H3, H4, D2, D3, D4, S2, S3, S4, C2, C3, C4)

%.D, Sp and C are obvious abbreviations for the 4 suits.

Hearts and diamonds are the red suits. Spades' and clUbs

are the black .Suits

Event A, is described by, "The card is from a red suit."

Event B. is, described by, "The number on, the card is 3."

Give the roster names of events in parts (a) to (f) and

folio' the Instructions in (g) and (h):

(a) Event A. (b) , Event B' (c) The union event of A and B.

'(d) . lrhe'intersectioveVent of ,A- and B.



(h)
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The complementary event of A.

The difference event of A and B.

Which three of the above 6 events A, B, A U B, A n

I and AFB are disjoint?

Represent the outcome set and events A and B as sets

of points in a plane with the suits assigned points

on a horizontal axis and the numbers assigned points

on a vertical axis.

Consider the experiment where two tetrahedra, one blue and

one yellow, are tossed. Each tetrahedron (a three dimensional

figure consisting of four triangular faces) has the numerals

2, 3, 4 on its faces.

The outcome of each toss is an ordered pair of numbers, the

first of which is .the number, on the down-face of the blue

tetrahedron and the second by that on the down face of the

yellow 'tetrahedron.

(a) Give a roster name of the outcome set, i.e. list. the

outcomes within braces.

(b) Give a roster name of the event C: "The sum of the

numbers on the down-faces is 6

c) Give a roster name of the event D:. "The number on the

down7face on the blue. tetrahedron is 4."

24
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(d) Draw a graph of the outcome set.

(e) On the graph in part (d), encircle event C of part (b).

(f) On the same graph encircle event D of part (c).

5. Use set notation involving union, intersection and

complement to describe the events shaded in the following

Venn diagrams.

(a)

(c)

brim 'Vennaiagiatha to illuititite :the

(a)? uB):n (b) X n n u
(0- -'/'u
(e)

(g) (A n c) u"'(B n c
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7. Compare the Venn diagrams for parts (c) and (d) of

Exercise 6. What do you notice about the two diagrams?

Can you fOrmulate an explanation regarding the relationship

between these two events?

Repeat Exercise 7 for parts (e) and (f) of Exercise 6.

Repeat Exercise 7 for parts (a) and (g) of Exercise 6.

9. Let the outcome set S be given by S = (ao bo c). Suppose

that a trial results in the outcome a. Under these

conditions which events of 8(S) have occurred?

Probability Measure

In this section we shall formulate the notion of

probability more precisely. Before doing this we should

recall the experiments we performed in a previous course.

The following, example gives some idea of the nature.of these

experiments and the related results.

Example 1. Toss a coin 50 times.

Outcome set: S =.(116 T)

Outcomes

Outcomes Tallies 'Frequencies Relative fre uenciea

1,3949//t
404#0

,##

32 32/50

18 18/50

50

Figure 6.24

26

50/50 = 1
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All of the experiments we performed seem to

have certain things in common.

Use the table in Figure 6.24 to verify the

following statements:

1. Each of the relative frequencies is a

real number between 0 and 1 inclusive,

, The sum of the relative frequencies of

the outcomes in S is 1.

The relative frequency of the union of

2 disjoint events is the sum of the

relative frequencies of the two events.

In Example 1 you can use (H) U (T) = (H, T).

In these experiments, there is nothing hypothetical about

the relative frequenCies, one only has to count and compose a

fraction. However-the word probability is used as a Prediction

of relative. frequency, The experiments sometimes-influence the

prediction and sometimes the symmetry of the experiMental

objects influence the prediction.

Question:,; do, relative frequencies have the 3

'properties mentioned-on the previous page?

I,e, give: an argument bated on arithmetic.

With the_properties Of, 4selatiVe,frequencies in mind the
,

following,64inition should not seem quite as abstract:

Definition 9. Let S be a finite outcome set and *(S) the

'power set of S. 'A probability measure P
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is a function with domain 0(s), and

codomain R, with the following properties:

(1) o p(A) 1 for every A E 9 (S).

(2) P(S) = 1

(3) If A and B are disjoint (i.e.,

A (1 B = 0), then:
P(A U B) = P(A) + P(B).

We call P(A) theprobability:of A, and the ordered pair

(S,P), consisting of the outcome set S and the probability

measure Ps, a probability. space,

Thus a -probability measure P is a function that assigns a

real number P(A) to every event A in such a way that properties

(1),. (2), and (3) are satisfied. Before we develop some logical

consequences of the definition, let us consider some 'examples.

The first example uses. ..a spinner experiment to motivate a

function t

in 9 (5).

it

which assigns real, numbers to the singleton events

The strategy in designing , the function t is to make

;to singleton events in.,t4k a way, that t. will

,playa:,role.,in:i.deterMining Suitable assignments to the events

irt49 :(3), fo,'EL;prObability- Measure, P. There are two simple

,requiiements/foi,,,t:-. ., =,',-,, , - ,, - ,,,, . .

1.: ' It ( (ail-Y ..',0' 1, -fOr-,- i = -1,-, 2,3".

2'; ',3,--

'01, , .P ', ',' I ', 'I ' iq ''' ,,, . ', Z : [ '1( (?1) ) 1, 7 .)
I

A = 1 ' '
' '

'' ', Of , '' , '' / r' '-..:.! ''', ,:, ';'' It. :N:, , 1 . /

r Le' 2. :" Spinner experiment. S = (al, a2, a3)

- 24 -

, 23
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Figure 6.25

(al)/ (ad' and (a3) are called

singleton events, or sometimes

just singletons, since they each

contain just one outcome, (al)

is the event that the arrow stops

on sector al of the spinner, and

similarly for (a2) and (a3).

(See Figure 6,25.)

The, power set of ,S or 4(S) is:

61S) = (0, (al), (a2), (a3), {a1, a2 }, (al,a3),

(a21413)1 fel°,21113"

Let t be the real valued function defined on

the singleton events of 410 by Table 6,2.

( (

t(t ) .25. .30

-Table 6.2

Apaltion! yse-the table-41°r function t to see ift.

satisfies:requireMents 1 and 2 listed above

the _example,

The-next,examplcdeveldpsLaspecificcaSe:of a probability

measure in:connection,;withvthe,,,apinnerexperiment.-

EXample,,3Let'Ate tba:;Outoome set,of'EXAmple 2,

S= (ali82/4,314 Letivbe a:-real valued

,XunCtian=Wined On the events A of XS) by

.Table 6.3
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A 0 ( 1) (a2) ( 3) (al a2 ) fa1sa3) tava3) (a1se2,a3)

P(A) '0 .25 .30 .45 .55 .70 .75 1.00

Question:

We make some

Check to see that the assignments made by

P in Example 3 satisfy the three properties

of a probability measure as defined in

Definition 9. Just select a few case

of property 3 to verify. Do you see

how the function P is built up from the

function t?

informal summarizing statements about the

assignments made by the function Pin Example 3:

-1, P(0) = 0. This will be proved later as a

consequenee of the definiton of a probability

measure.

The assignments made to the singletons by P

were the same as those made by t.

3,
, All of the events in 9(S) Containing. more

, 7,than '1 outcome can be formed by the union of

2orniore aingletons,t., lEvery,pair of distinct

sirtgletont, are disjoint. ,Therefore, property 3

and the assignments to singletons can be used

f.1"i:i-t-ofind,..van appropriate- aSSigninent for ',the' "other

CEO/into:4n 4(S ) eiciptØ.

'Example 'fderivations of specific
-

probabilities 'for'''cirtaiic'events' in -.9(8) of
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Example 3 by using unions of singletons in

4(S), property 3 and an extension of property

3 to more than 2 events. Notice that we omit

the braces in the probability statements to

simplify the notation:

1. (eipa2) = (al) U (ad

P(alsa2) P(al)
P(a2) = .25 + .30 = .55

(a11 a3) (al) U (a3)

P(a1,113) = Nal) + P(a3) .25 + .70

(a2,a3) = (a2) U (as)

P(a2,a3) P(a2) + P(a3) = .30 +

(ara20.3) = (al) U (612) U (es)

p(ai,a2,a3) = P(ai), + P(a2) + P(a3)

=' .25 + .30 + .45 '= 1.00

From the 4 parts of example 4 one might suspect that the

procedure displayed can be generalized to include events which

contain any number of ontcomes. This, in fact, is the case:

Theorem.l. Let (S,P) be a probability space, with a finite

.45 = .75

outcome set :S. Then for every A 4 9(S) such
:

that A is, the union of 2 or more' singleton

events, '42(A) is the -sum- , the probabilities

of"those,sirigiet6ns.

More' 'briefly: -, Let (SiP)' be''aprObability space.

and S For every A' E 9(S),
1,

.

0.4 ,E

7
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(n(A) denotes the number of elements in set

A.) The proof of Theorem 1 requires

mathematical induction.

We shall call the probabilities P(ai) for ai f S,

elementary Probabilities.

Theorem 1 tells us that the probability measure P is

determined by the elementary probabilities. In fact, this is a

common way to give a probability measure for finite outcome sets.

In Examples 2, 3, and 4 we saw how a probability measure is

given in this way.

Maniple 5. The experiment of counting the number of

customers entering a certain post office

during one minute has the outcomes and

elementary probabilities shown in Table 6.4.

(140.c:repreient one customer, 2c two

customers, etc;)

more than
Outcomes ., ' Oc , 1ó 2c

. ,

3c 3c

Singletons , (0c ) (lc) (2 ) (3c)
(more than
3c)

ElementarY ' ,' ,

Probabilities .05 .15 .22 .22 .36

Table 6.4

Let4 be the event that at most 2::,customers

arrive, during one minute. Then:

-,, A= , (0c; Ic; 2c)

.. ,

r, 32
r r ,
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From Theorem 1 we obtain:

P(A) = P(0c) + P(lc) + P(2c)

=.05 +.15 +.22

= ,42

In a similar way we can get the probability that

at least 3 customers arrive during one minute:

.22 + .36 = .58

Ekamo116. The experiment of tossing a certain die has the

elementary probabilities displayed in Table

u.5.

Outcomes 4 5 6

Singletons (I) (2) (3) (4)

(5)
(6)

Elementary,
Probabilities,

14 .17 .16 . .19

Table 6.5

The probability for more than 2 but less than

is given by:

.16 + .18 + .19= .53

&ample, 7. Suppose that all singletons in the die tossing

experiment have the same elementary probability

.16

(See Table 6.6)":

Outcome!: .

I

6

Singletons ,I ) -42 (3) (4) (5) (6)

Elementary
Probabilities

1,
,.

S, S S
1
6

1
S

1
6

Table 6.6

33,
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In this problem, the probability that the

number of dots is more than 2 but less than

6 is:

11P(3) + P(4) + P(5)
1 1+ 6 = F

In cases where all the elementary probabilities

are equal, we say that the probability measure

is uniform, Section 6.6 will be devoted to

uniform probability measures.

In the following theorem we have collected some additional

consequences of our definition of a probability measure.

Theorem 2, Let (S P) be a probability space, and let

A, B E 4(S). Then:

(a) P(A) pa)

(b) plgo 0

(c) p(A\B) = Poo - P(A n B)

(d) If B c A,

P(B) P (A)

(a) The events A and I are disjoint and

U S.

Then using, the properties of P:

Proof,

1 = P(s) = P(411 = NAY P(A).

(b) Since Ir. gr, it follows from (a) by

replacing A by S that P(S) + P(01 = 1,

But from P(S) = 1, it now follows that

P(0) = 0,.

34
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Figure 6.25

) From Figure 6.25, we can see that

A = (A\ B) U n B),

(A\ B) n (A n 13) = 0.
Then from property 3 of a probability

measure,

P(A) p(A)3) + P(A n B), or

P(A\B) = P(A) 47.(A n 13).

(d) If B c A, then A (1B = B. Thu

P(A) P(A (1B) P(A) P(B) = P(A\B),

by part (c) of this theorem, But

P(A\B) Z 0, Thus P(A) P(B) 0 or

P(B) P(k).

Some parts of Theorem 2 will,be used more often than others.

It is sometimes easier to compute P(A) than p(A), But, since

P(A - P(A ), from part (a) of Theorem 2, we can, obtain P(A)

easily once we know P
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Example 8. In a certain game Allan tosses darts at a

dart-board. The dart-board contains

rectangular regions as shown in Figure 6.27.

The probability that he will hit region A

is .4, and the probability that he will hit

region B is ,3. The probability that he

will hit both regions is .1. Figure 6.27

illustrates the various regions of 'the

dartboard as indicated by AB, AA, A n B

and =EL

B

AnB

A U B
B\A

figure 6.27

We can obtain many probabilities related to the dart game

y using Figure! 6.27 and our formulas. Thus:

P A \ B P(A) P(A fl B) .1 = .3

Therefore .3 is the ProbabilitY that Allan hits A but not B.

The Probability that he hits B but not A is obtained in a

similar manner:

P(B\ P(B) P(A f1 B) .3 .1 =

The probability that he does not hit' is:

P(q) 1 P(A)

Figure 6.28 summarizes,_ with a
c-ru

ties derived by the formulaa of Theorem 2.

1 4 ,6

Venn diagram, some probabili-

36
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Figure 6.28

Check to see that the results obtained from Theorem 2 agree

completely with our Venn diagram,

Property 3 of a probability measure P has to do with the

probability P(A U B) where A and B are disjoint. In the

following theorem we consider the probability ox' A U B where

A and B need, not be disjoint:

Theorem 3. Let (S, P) .be a probability spa.ce,

all events A, B E A(S) we. have:

P(A U B) P(A) + P(B) - P(A n B)

(See Figure 6.29.)

For

37
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We observe that A U B = (A\B) U B, where (A\B) and B

'are disjoint. Hence, from property 3 of a probability measure

we have:

(1) P(A U B) = P(A\ B) + P(B)

From Theorem 2(c) we have:

(2) P(A \ B) = P(A) - P(A f1 B)

Substituting the right side of equation (2) for P(A\ B) in

equation (1):

P(A 1,1)3)7 P(A) 4. P(B) - P(A. Cl B)

Question: How can one prove Theorem 3 with the aid

of Theorem 1?

Example 9. Using the dart board example again, let us find

the probability that Allan hits region A or

region B (that is, at least one of A and B).

From Theorem 3 we get:

P(A U B P(A) + P(B) P(A Cl B)

k+ .3 - 1 .6

This agrees with our previous result.

Property 3 of a probability measure can be extended to more

than two disjoint events, Thus, if A, B and C are di.ajoi.nt,

then:

PAUBUC P(A) + P(B) + P(C). Even more generally,

if the events Al, toA , ., * are disjoint, then:

P(A1 U A2 U P(A2) + P(An)

If we abbreviate Al' U An by writing U A4
1.1 .1.

and .use the summation Symbol r, we can write:

38
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n n
P(

i =1

U A4)
i =1

E P(Ai)

In Section 6.5 you will derive several other interesting

properties of a probability measure.

6.5 Exercises

1. The faces of a tetrahedron are painted red, yellow, green,

and blue. For the experiment of tossing this tetrahedron

and observing the color of the bottom face, we can use the

following outcomes and elementary probabilities:

Outcomes

Singletons

Elementary
probabilities

lied `fellow (amen blue

fital bellow)

What is the probability for each of the following events:

(a) (blued (e) (Pink)

(b) C7ellow or green (f) (not pink

(c) (not red)

(d) (The color is red, green, or blue)

. In the experiment of counting the number of yellow cars that

pass 'a certain street corner dliring .a two minute interval,

the following outcomes *andprobabilities are given:

Outcome8 0 CAM 1 car 2cars 3estb ii call
MCWO than

4 eats

ElementarY
Prol?Oilities

.13 .21 .21, ..18 .do
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Find the probability that the number of yellow cars passing

during a two minute: interval for this street corner is:

(a) at most 1. (b) more than 2. (c) between 1 and 4,

exclusive.

3. For the experiment of tossing three symmetric coins and

counting the number of heads, we can use the elementary

probabilities 1/8, 3/8, 3/8, and 1/8 for the events 0, 1, 2,

and 3 heads respectively. Find the probability that there

is at least one head.

.*

The figure above shows a maze for experimenting with rats.

40
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We assign coordinates to the intersections. The rat starts

at the origin and may jump in any direction where there is

a path shown in the diagram. Each jump is 1 unit in

length. Starting at the origin the rat takes exactly 3

jumps reaching 1 of the other 24 points.

(a) Use the counting principle and the fact that the rat

chooses directions so that each of the four directions

possible are equally likely to find the total number

of 3-Jump trips,

(b) Find the 9 trips that terminate at (1,0), e.g.,

(0,0) (0 1) (111) Oh (1,0),

(c) What is the probability of the rat terminating a

trip at (1,0).

(d) Find the probability of the rat terminating a trip at

each of the points where this is possible, ejl
P(0,3) =

(Hint for (d): use symmetry, e.g., the trips to (1,0

are symmetric to trips to'(-1,0).

5. What is the probability that the rat of Exercise 4 stops

on the line with the'equations:

(a) x + y = 1

(b) x y,= 3

(c) x = 1

(d) x - y = 3

What is the probability that the rat of Exercise 4 stops

it a point whoSe coordinates belong to the set:

(a) ((x,Y) lx1 lyl = 1)

(b) ((x,Y) lx1 + Ili = 3)

11
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Let S = (al, a2, a3, ak) be an outcome set and

P(a1), P(a2), P(a3), P(a4) the elementary probabilities.

Show that from the definition of a probability measure

P, it follows that the elementary probabilities must

fulfill the two conditions:

(a) P(ai) > 0 for i E (1,2,3,4) and

(b) 4
E' P(a4
1=1

Try to generalize the above statements to a general

probability space, (S, P)

Let p be.a.number between 0 and 1, exclusive:

(a) Show that if S = (0, 1, 2) the numbers,

P(x) (:) pX(1 p)2 X,

fulfill the two conditions in Exercise 7 above.

(b) Show that if S = (0, 1, 2, , n), the numbers,

p(x).= (x) pX(1 on, -
X,

satisfy the two conditions in Exercise 7 above.

9. In one of the classical experiments performed by Mendel,

the founder of genetics,, the probability of getting a

yellow pea was is a wrinkled, pea and, the, probability of

getting both yellow and wrinkled was 13.6., Find the

probability that a. pea is

(a) .not yellow. (c). yellow but not. wrinkled.

(b) not wrinkled, (d), wrinkled but not yellow.

42
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10. An engineer in a transistor factory finds that the

.probability that a transistor has defectA is .1;

the probability that a transistor has defect B is .05;

and the probability that a transistor has both defect A

and defect B is .03. Find the probability that a

transistor has:

(a) at least one of defect A or defect B;

(b) neither defect A nor defect B.

'1. Let (S,P) be a probability space. Prove that for every
jl

AL, B E 410:

(a) P(A n 13) S P(A)

(b) P(A) S P(A u 13)

(c) P(A U B) S P(A) + P(B)

(Hint: use Theorem 2(d) for parts (a) and (b) and

Theorem 3 for part (c).)

12. When going home from work, Marshall can take either one of

two busses, A or B. He finds that when he gets to the bus

stop, the probability that bus A will be there is .2, The

probability that bus B will be there is .3, and the

probability that both bus A and bus B will be there is .1

Find the probability that one of the busses but not the

other will ue there,

13. Show that if A and B are events, then the probability that

exactly one of A and B will occur is:

POI + P(B) - 2P(A ft B).

43
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14, The odds favoring event A, written 0(A), is defined

0(A) ,

1)(
,

POD 0, show that P(A) > .5 if and only
X)

if 0(A) > 1.

*15. Let A, B and C be events. Show that:

P(A U B U C) = P(A) + P(B) + P(C) - P(A A B) P(A n c)

P(B n c) + n B n c).

*16, Prove that P(A U B) = 1 - fl g).

6.6 Uniform Probability Measure

We saw an instance of a uniform probability measure in

&ample 7 of Section 6.4. We now state:

Definition 10. Let (S,P) be a finite probability space.

The probsbility measure P is called a

uniform, urobability measure, if and only

if all of the elementary probabilities are

the same. In symbols: Let S = (a1,....an).

Then P is a uniform probability measure if

and only if P(ai) = P(a3) for every pair of

subscripts (1,j) for i = 1,2,.. n and

=1,2, o n.

We now derive a formula that is used to calculate probabilities,

when the prObability measure is uniform, As a,preparation for

the proof of the theorem, suppose that the outcome set is

S = (al, a2, a3, a4). If the probability measure is uniform,

then the four elementary probabilities are equal:

P(al) = P(a2) P(a3) = P(a4)*

44



Since the sum of the elementary probabilities must be 1, each

1
must equal 4.. The same kind of reasoning can be used to show

that, if the outcome set, S = (a1, a2, an) has n outcomes

and the probability measure is uniform, each of the elementary

probabilities is
1

Theorem 4. Let (S, P) be a probability space with a

uniform probability measure.

Let N(S) and N(A) be the number of elements

in S and A. Then the probability P(A) of

the event A is then given by:

P(A) =

Proof. We know from Theorem 1 that P(A) = E
a
i
CA

But in this case all of the elementarY

probabilities are 11., and n = N(S), Thus

+ +n nP ( A )

N(A) terms

From this we see that if the probability measure is uniform,

P(A) is the quotient of the number of outcomes in A and the

N A
total number of outcomes in S. The formula P(A) = 4-4. wasN s

for a long time the only definition of probability, It was,

NA

for instance, the definition that Pascal and Fermat developed

method of calCulating probabilities

referred to as the "classical" method.

in their correspondence,

is therefore often
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We now show by examples how probability is calculated

using P(A) = O, We shall make use of what you learned

in Chapter 5, Oombinatorics, You will find that the counting

principle is especially. usefUl. To refresh your memory, we

restate this principle:

CP If a first activity can be completed in r1 ways,

and then a second activity can be completed in

r
2
ways, and so on until a kth activity can be

completed in rk ways, then the sequence of k

activities can be completed, one after the other,

in r1 r2 . rk ways. Figure 6.30 illustrates

the CP by a tree diagram in the case where r1 = 3,

= 2 and r3 = 2:

Figares6,30

We shall also have occasion to use the following formulas

that You learned in CombinetPriee:

The number of permutations of a set of n elements



(b) The number of subsets with r elements of a set with

n elements is given by:

(n)r n:
rl (n - rft

When a selection is said to be made at random, this means

that each possible selection has the same probability, In this

case a uniform probability is being used,

Example 1,

Figure 601

There are five chairs at a round table. (See

Figure 6.31.) Two of these are selected at

random and in such a way that the same chair

cannot be chosen twice. What is the probability

that these two chairs are next to each other?

Before reading an explanation of a solution to this problem,

try to decide for yourself what a suitable outcome set might be,

and keeping in mind that a uniform probability distribution is

implied, decide what the probability of the event that the selected

two chairs are next to each other. There are two ways to make

the decision, one by combinatorics, the other by guessing (and

then using combinatorics.)

47
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First by using the brute force method one could also:

(a) Lit all of the two-member subsets of the set of

chairs, (a, b, c, d, e);

(b) List all of the two-sembered subsets of the

event "two chairs are next to each other."

(c) Then use the formula developed in Theorem 4,

Using combinatorics is quicker:

(a) The number of two- member subsets of a set with

five members is (2) = 10;

(b) Then you can look at Figure 6.31 to see that pairing

each chair with the one on its right will give the

two - member subsets that are next to each other,

i.e., 5 of the subsets.

(c) Using Theorem 4 then gives Air= as the probability

of selecting 2 chairs next to each other at random

from 5 Lairs at a round table,

Question: Generalize this example to the case where there

are 6, 7, 8 and in general'n chairs around the

table.

Suppose that the problem in Xample 1 had been worded:

"There are.5 chairs at a round table. One of the 5

is selected at random. Then from the remaining 4

a second chair is selected at random. What is the

probability that these twn chairs are next to each

other?"

Now it seems. appropriate to use a set of ordered pairs as

48
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an outcome set. You can use the idea of permutations to find

N(S). N(S) = (5)2 = 5 x 4 = 20. You can use the Counting

Principle to find the number of ordered pairs of chairs that

are next to each other. You have 5 choices for the first chair

and, since there are 2 chairs next to any given chair around

the table, you have 2 choices for the second. This gives 5 x 2

or 10 ordered pairs of chairs next to each other, By now you

2must know that the probability is 5 - =
57-7; 20 -

Dauti2pl 2, There are nine marbles numbered 1, 2, . 9

in a bag. Marbles 1, 2, 3, 4 are blue and

marbles 5, 6, 7, 8, 9 are red. One of the

marbles is selected at random from the 9.

Then a second marble is selected from the

8 remaining. Find the probability that both

are blue,

In Example 2 the wording clearly suggests that a suitable

outcome set would be a set of ordered pairs of marbles and that

since the selection is without replacement, ordered pairs with

equal components would be ruled out.

Question: FOr tta shke of variety (as well as your

edification) use Figure 6.32 to find the

answer to Example 2, Also answer the

following:

(a) Which set of dots represents the outcome

set?

(b) Which set of dots represents the outcomes

49
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in the event "both marbles are blue."

(c) What is the probability of the event

described in (b).

(d) Why were the dots on the main diagonal

deleted?

I.

-

qero

red 7

4

5

4

blue 0 11
The event
that both
marbles are
blue.

1/4.1 2 3 4.0 5 (di 7 g

blue r

Example 2 can be reworded to suggest that a suitable

outcomes set would be all two- member subsets of the set of

marbles. Then the problem is easy to solve using what you

learned in combinatorics ebout the number of r-member subsets

of a set with n members.

Question: Solve &ample 2 after rewording to the

effect , "Two marbles are selected at random

from the 9." Select as an outcome set the

two-member subsets of the set of 9 marbles,

50
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Example 3. There are 10 boys and 12 girls in a class.

Eight students are selected at random to

constitute a committee. What is the

probability that there will be 4 boys and

4 girls on.the committee?

In problems like this we use subsets as

outcomes. The total number of outcomes

is (8) . By using the counting principle,

it is easy to see that the number of subsets

(12 \
with 4 boys and 11. girls is (11?)

\ 4 )

Thus our probability is:

CO (1f)

(1!)

Check the computation of *I
Table 6.7 is a table of random numbers, The table consists of

digits arranged in rows and columns. The digits have been

seledted-by---aome--randonr-p-rocescThivnieans, among-other-things,

that they have been selected in such a way that in choosing

single digits from the table, each of the ten digits is equally

likely to be selected, Each of the digits has the probability

of 041 for selection.

If you select a single digit from a table of random nutbers,

the probability that it is 7 is 0,1. The probability that it is

even is 0,5 (Can you explain why?)



23018
76576
61272
04659
53947

76609
10984
23239
63.816
50444

27393
b4701
54254
30390
30160

01623
00663
39637
18346
36015

57055
12733
40373
65166
47672

64389._
38755
55758
51298
73346

34585
;352,

28
97266
91129

7898o
554.75
66562
16803.
21476
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,A TABLE OF RANDOM NUMBERS

70826 40641 52659 27607 43739 88519
38158 55842 70050 49196 29696 19015
23923' 30483 02163 43236 05158 81197
04404 04615 14601 73036 20220 49825
02640 97591 66940 95692 15892 34629

15914 29821 04270 20023 23018 12681
40554 53947 88347 14830 05692 54180
17914. 64198 21676 5
50784
04703

2624
57949

69071
09636

0667544 15816
46311

p3r3625
41

748

18475
7 16

3
701645170

09213
19167

78952
70741

14240
69647

65983
61359

78919 83984 95656 08613 99006 27117
92457 75943 57616 60085 84104 84104
35707 31830 97344 58501 19138 08198

37762 68295 28263 06426 962 845y
70293
11770

80716
35081

51129
15498

63516.4
862

2777240
88062

609358
11338

01929 65329 91095 75364 58584 16248
72437 84726 53714 98790 69562 81759

61920 08487 33754 95846 0685 7 74128
19076 26961 69330 50226 35582 04502
36704
26844

9804
577745

683 82
18627

14892
48103

71309
79279

35475
4.3o66

97430 18926 79538 09071 46137 65030

.7887o ._. 25752 82806 38829 55168_
08583 14761 17431 48456 79060 32E394
10329 94997 26071 74940 24416 61540
27096 54768 30607 6843.0 99269 70619
82246 90929 79535 90512 26472, 16414

74481 55659 57038 84156 44410 25201
08747 56609 43607 19132 60515 79963
58653 22192 95497 31143 19645 I 78500
75002 73747 36318 40114 4588E1 12867
75202 58706 31831 80194 19698 23459

84195 33147 36963 54818 57770 32179
j 02174 37177 58609 15883 18556 49509

92193 05353 00615 10525 42541 87590
f 02719

d 66002
00230
37371

11109
03472

84054.
76458

58919
74387

96896
25362

58374
39833
13871
73845
14693

89036
91296
99121
55431
05681

99274968
45

38543
15358

8298140719.
74725
68897
29184

33143
30822
05946
90043
33138

52220
86947
75853
03272
99265

18125
13922
17521
32185
04664

43227

01688
41139

90261
5!3586



-49-

Example 4. There are many ways to use a table of random

numbers. This example will illustrate one

particular way of using such a table. Out of

a group of 100 grade 9 students, 40 are to be

selected at random for a special course in

game theory. Each of the students are

initially assigned a two digit number from

.sequence 00, 01, 02,,,., 99.

Question: If the probability of selecting any one of the

10 digits is .1, what is the probability of

selecting one of the above two-digit numbers

in a table of random numbers? If you were

to use Table 6.7 to select the group of 40

you might start by using just the first 2

columns of digits as shown below:

Student chosen
1st
2nd

The first student chosen for the groUp of 40

would. be the one to whom 23 was initially

assigned. Then 76, 61, 04, 53, etc. would

follow. This procedure would continue until

40 students were selected. Notice that

although the original assignment of numbers to

students was not a rands= one, the use of the

random number table; made the selection of the

r-r)
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40 for the experimental group a random one.

Some important considerations are:

(a) If a pair of digits occurs a second

time you simply skip it and go on.

(b) If you reach the bottom of the two

columns before 40 are selected, you

start at the top of columns 6 and 7

and continue.

(c) Rows could be used instead of columns

by selecting consecutive mutually

exclusive pairs.

(d) You should make a note of the page, row

and column when you finish using the table

for the next problem. When you start

using the table for the next problem, you

should start where you left off. If you

keep repeating the use of the same set of

digits you could be biasing your selection.

Questions: (a) How would you choose 25 persons at random

among 67 with the aid of random numbers?

(b) How would you use random numbers to

simulate:

(1) tossing a symmetric die,

spinning a spinner

tossing a fair coin.
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If your experiment is to select two adjacent digits from the

table, the sample space is (00, 01, 02, 98, 99). The

outcomes then represent two-digit random numbers,

In this case also you can assign a uniform probability

measure to the set of 100 outcomes. For instance, the probability

that a chosen two-digit number is less than 36 is 3-106 = 0.36.

In some of the following exercises, and in Section 6,8 you will

work with random numbers.

6.7 Exercises

1. Five chairs are in a row. Two chairs are selected at random.

What is the probability that they are next to each other?

2. A two-digit random number is selected from a table of random

two-digit numbers. What is the probability that the number

(a) is even? (b) is greater than 25? (c) has 9 as its

last digit?

3. A three digit random number is selected from a table of

random three digit numbers:

(a) What is the outcome set? (b) What is the probability

that the chosen number is odd? (c) ... is less than

100? (d) ... starts With a 9?

Two symmetric diCe are tossed. Construct a graph.of the

outcome set such as the one in Example 8, Section 6.2 and

illustrate the following events by circling the appropriate

sets, of dots. Use the graphs to find the probabilities of
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the events!

(a) the total number of dots (on the upper faces) is 7.

(b) the total number of dotit is less than 6.

(c) at least one die shows 2 dots.

(d) both dice show more than 3 dots.

(e) at least one die shows at least 3 dots.

Four of the smallest squares in the lattice are selected at

random. Find the probability that the four squares

(a) are in the same row. (b) are in the same diagonal.

(c) are distributed so that there is exactly one in each

row and exactly one in each column.

Derive the elementary probabilities in Exercise 3 in

Section 6.5.

Derive the elementary probabilities in Exercise 8(b) in

Section 6.5 for n = 5 and p=

If you draw 5 cards from a deck of playing cards, *hat is

the probability of getting 3 aces and 2 kings? (The deck

consists of 52 cards, 4 of which are aces, and 4 kings.)
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*9. We will temporarily define a five-letter word as any ordered

quintuple of letter with 2 vowels and 3 consonants.

We will define a vowel as any member of (a, e, 1, o, u),

and a consonant as any of the other 21 letters in the

alphabet. We will use a symbol like CVCVC to represent the

form of words with an alternating consonant-vowel arrange-

ment. You may repreat letters in a word in parts (a) to

(d) below. The form of a word, as used here, is a mapping.

It shows which positions get consonants (C), and which

get vowels (V1, ae..

--"°2 C
3
4 V
5

(a) Use the counting principle to find the number of

words with form CVCVC. (EXpress answer as factors

of product.)

(b) Do the same for CCOVV.

(c) How many different forms are there for a five-

letter word?

(d) What is the total number of five-letter words?

(e) If you use a uniform probability measure, what is

the probability of selecting the word "teded?"

(f) Repeat (a) and (b) with the restriction that no

letter may be repeated within the same word.

10. Consider the experiment of tossing three symmetric dice.

Use the set of ordered triples of nukbers from 1 to 6 as
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an outcome set. Also use a uniform probability measure.

(a) What is the probability of getting 3 sixes on a

toss?

(b) In how meaty ways can an outcome have 2 fives and

1 six?

(c) What is the probability of tossing 2 fives and a

six?

(d) What is the probability of getting 0 sixes on a toss?

11. Ten cards were numbered from 1 to 10 and placed in a hat.

A set of 3 cards wao drawn at random from the hat, i.e.,

a three member subset of a ten membered set. What is the

probability that one of the cards drawn was the 5 card?

State a theorem about probability that you used to solve

this problem.

12. Toss 3 symmetric dice. Let the outcome set be the set

of 216 ordered triples of the cartesian product,

(1,2,3,4,5,6) x (1,2,3,4,5,6) x (1,2,3,4,5,6) .

(a) Give the roster name for the set of sums of the

triples of numbers.

(b) How many of the triples have a sum of 17?

(c) What is the probability of getting a sum of 17

on a toss of the three dice?

(d) Find the probability for each of the possible sums

starting with P(3) = 1/216.
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6.8 Looking Back

When you studied probability in Course I Chapter 5, you

performed trials of experiments and you studied the behavior of

relative frequencies. For instance, in connection with a tack-

t^ssing cixparirant you obtained Figure 6.33.

Relative
Frequency
1.00

0.90

0.80

0/0
0.60

0.50

0.40

030

0/0
0.10

0.00 .
C) C) 0 0 0 C) C) C) 0 0 0 CD 0 0

CV .4 42 co C3 (4 .4 42 co C3 C4 43 co 0Nr4NNNM

Figure 6.33:

You saw in connection with this and similar experiments

that the relative frequency stabilized. This means that as the

nuraber of trials continue to increase the relative frequency tends

to stay close to some number between 0 and 1.

In this chapter you have learned, among other things, to

calculate probabilities. Since the properties of probabilities

59
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are similar to those of relative frequencies, it seems reasonable

to ask if there is any relation between probability and relative

frequency. We consider this question in connection with a

concrete experiment,

Example. Let us return to random numbers. The experiMent

is to select a two-digit number from Table

6.7. A is the event that the number selected

is less than 40. By the method of Section

6.6 you can easily find:

P(A) = 0,40

Since this probability was obtained theoretically,

it is interesting to see if our experiment

yields a relative frequency close to O.O.4

See Section 6.6 Example 4 for some suggestions

on the use of a table of random numbers.

Using the format of Table 6.8 and the suggestions of Example

4, Section 6.6, record the results of 50 trials of the experiment

described in Example 1 above. Also record the frequency and

.relative frequency for the event A.

Question. Did the relative frequency of A tend to

0.40 as the number of trials approached

50? If not, what would you guess the reason

might be?

60
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TRIAL

NUMBER OUTCOME FREQUENCY OF

A

0

RELATIVE FREQUENCY

OF A

0.00

0.00

52

2 99

3 46 0 0.00

4 14 1 0.25

42 1 0.20

6 22 2 0.33

7 87 0.29

8 20 3 0.38

9 39 4 0.44

10 51 4 0.40

11 49 4 0.36

12 22 5 0.42

13 56 5 0.38

14 83 5 0.36

15 24 6 0.40

16 02 7 0.44

17 27 8 0.47

18 8 0.44

19 00 9 0.47

920 86 0.45

Table 6.8
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Questions. Make a graph like the one in Figure 6.33 showing

your results. What conclusions follow from your

experiment? What relationship exists between the

probability 0.40 and the relative frequencies

that you have observed? Do you agree that the

probability 0.40 was a good prediction of the

relative frequency for the event A in 50 trials?

For some situations the symmetry of the experimental objects

or the results of previous experiments might convince us that a

uniform probability measure is the best model. But in certain

other situations the lack of symmetry or experimental evidence

may lead us to believe that a uniform probability measure is not

appropriate. Consider, for example, the two experiments in

Figure 6.34:

Tossing a Coin

Outcome

Elementary

Probability 0.5

(a)

Tossing a Thu: ibtack

T Outcome I Pin U Pin Down

Elementary

0.5 Probability ? ?

(b)

Figure 6.34
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Do you agree that it seems more appropriate to use a uniform

probability measure in the coin tossing experiment than in the

tack tossing experiment? If you think about the two experiments,

you will see that there is some kind of symmetry in the coin

tossing experiment that is not found in the tack tossing experi-

ment. You might ask how we assign the elementary probabilities

in the tack tossing experiment. One way is to perform trials

and use the observed relative frequencies as elementary probabi-

lities. This is a method that is studied extensively within

the field of statistics. You will learn more about it in later

courses.

6.9 Exercises

1. Suppose that you selected 50 family names at random from

a telephone book, The outcome set would the set of

possible lengths cf the names, i.e., the number of letters

in the name, Do you think that with a large sample you

would use a uniform probability measure to predict the

length of names? Design an experiment and perform about

30 trials where you would use a table of random numbers

to select a page of the telephone book, then use the table

to select a column, and then use the table to select a

name within the column. Make a table'ylth the headings:

Name length Frequency Relative frequencz
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Examine the relative frequency distribution and make a

decision about what kind of a probability measure you would

use for the lengths of names in the telephone book.

2. Consider the experiment of selecting a card at random

from a deck of playing cards and recording the suit. Let

the outcome set be:

S = (heart, diamond, club, spade)

Shuffie the deck well each time before making a selection

and perform 64 trials.

(a) Record the frequency of each outcome.

(b) Record the relative frequency of each outcome.

(c) What is the sum of the relative frequencies?

(d) Would you use a uniform probability measure for

prediction in this experiment?

(e) What was the relative frequency for each of the

following events: "not a spade;" "a red suit;"

"red suit or black suit " ?

V) What probability would you assign the events in

part (e), using a uniform probability measure?

3. Classify each of the following experiments with related

outcome sets according to whether or not you would choose

a uniform probability measure:

(a) Tossing two coins; outcome set is the cartesian product,

(H, T) X (H, T).

(b) Tossing two coins; outcome set based on number of heads:

S = (no heads, one head, two heads)
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(c) Selecting an item from a p- oduction line:

S = (defective, non-defective).

(d) Selecting a card from a deck of playing cards:

S = (face card, not face cardl.

(e) Selecting a card from a deck of playing cards:

S is the set of 52 different outcomes.

(f) Selecting a marble from a box which contains 3 red

and 5 white marbles:

S = (red, white).

(g) Selecting a marble from a box which contains 4 yellow

and 4 blue marbles:

S = (yellow, blue).

4. Suppose for a certain coin we have evidence that probability

1/3 is a reasonable assignment for heads in the experiment

of tossing the coin. What would you predict as the

frequency for tails in 51 tosses? What would you predict

as the relative frequency of tails?

6.10 Looking Ahead

In this chapter you have been introduced to these basic

concepts of probability theory: outcome set, events, and

probability measure. This is not your last contact with this

theory. In this section we shall give you a preview of things

to come.

One of the most important conepts in probability theory

is that of independence. Briefly and somewhat loosely, two
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events A and B are independent if the fact that one of them has

occurred does not affect the probability of the other occurring.

This doesntt quite tell the whole story, but it will do for now.

You will meet this concept next year and also the related

concept of conditional probability.

We next illustrate in an example an important concept that

you will study at length in future courses, the concept of a

random variable which you have encountered before without this

name. This concept will bring together many ideas about

experiments, mappings and probability.

Example,. Consider the experiment of tossing a symmetric

coin twice. Let (H, T) represent the outcome

that the first toss turns up heads and the

second tails. The outcome set is then:

S = ((H, H), (H, T), (T, H), (T, T))

or S = (H, T) X (H, T) .

We illustrate this outcome set in Figure 6.35.

Second This point is (T, H) for
toss the outcome first coin

1 I tail, second coin head.
I

H

H T

Figure 6.35

' First toss
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It is reasonable to use a uniform probability

measure fdr this experiment. In other words v.e

assign the elementary probability 1/4 to each

outcome.

Suppose we are interested in the number

of tails obtained. We would then define a

ma,pping X with domain S and codomain R, which

assigns values as in Figure 6.36. Thib mapping

X is called a random variable. Any function

from an outcome set to the real numbers is

called a random variable.

Second toss 1

T
-17

H

1

H T First toss 0 1 2 No. of

Figure 6.36
tails

What is the probability of exactly 1 tail? There are two

outcomes, (H, T) and (T, H), that result in exactly one tail and

each has probability 1/4. Therefore the probability of exactly

one tail is 1/4 1/4 = One easy. way to find this and

similar probabilities is to let the elementary probabilities

"go along" with the mapping. In other words, the probability of a

certain number of tails is the probability of the event in the

original outcome set that maps onto this certain number of tails

as pictured in Figure 6.36.

It is now easy to find the following probabilities:

The probability of exactly two tails,

r)
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The probability of at most two tails,

The probability of at least two tails;

We will have more to say about random variables in the future.

6.11 acercises

1. Consider the :experiment of tossing three coins and the

outcome set

S = (HBE6 HHT, HTH, THH, HTT, THT, TTH, TTT),

Let the random variable X "Je the mapping that maps each

outcome on the number of heads in the outcome. For

example, X(THH) = 2.

(a) Find the image of each outcome in S.

(b) Tabulate the range of X.

(c) Draw a mapping diagram to illustrate the random

variable. (See Figure 6.36.)

(d) Assign to each image a probability which is the sum of

the probabilities of the outcomes in S which map onto

that image.

(e) Make another mapping diagram showing the assignment

of probabilities to the images under the random

variable X.

2. Let an experiment be to select a card at random from a deck

of playing cards, and the outcome simply the selected card.

68
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Let Y he a random variable which maps an-outcome onto 1 if

is a red card, and maps the outcome onto 0 otherwise.

(a) Using the same procedure as in Exercise 1, find

the probability of 1; find the probability of 0.

(b) toes the assignment of probabilities to (1, 0) in

(a) satisfy the 3 requirements of a probability

measure?

3. Five cards are placed in a hat. The cards are numbered

17rom 1 to 5. A card is drawn at random and not replaced.

A second card is dravn at random from those remaining.

(a) Make up an outcome set for the experiment based on

ordered pairs.

(b) Assign probabilities to the outcomes.

(c) Find the images of the outcomes for the random

variable which assigns the absolute difference of

each pair to the pair. (Define the absolute

difference of (a, b) to be le - bi.)

(d) Assign probabilities to the images in (c) based on

the assigned probabilities in (b).

6.125

Let S be an outcome set. A is an event iff A c S; or

equivalently, iff A E *(S), where P(S), the power set of S, is

the set of all subsets of S. If A and B are events, then:

69



-66-

(a) A U B is the union event of A and B.

(b) A n B is the intersection event of A and B.

(c) E. is the complementary event of A.

(d) B is the difference event of A and B.

(e) A and B are disjoint if and only if A r B = 0.

(f) A, B and C are disjoint if and only if A n B = 0,

B n c = 0 and A n c = 0.

A probability measure F is a real valued function with 4(S)

as its domain, and it has the properties:

(1) 0 S P(A) S 1 for every A f 4(S),

(2) P(S) = 1,

(3) If A and B are disjoint, then P(A U B) = P(A) + P(B).

We call P(A) the probability of A, and the ordered pair

(SsP), consisting of an outcome set S and a probability measure

P, a probability space.

Events that contain exactly one outcome of outcome set S

are called singleton events. Probabilities of singleton events

are called elementary probabilities.

Let (Ss P) be a finite probability space. The probability

measure P is called a uniform probability measure if and only

if all the elementary probabilities are the same.

Theorem 1. Let (Ss P) be a probability space, with S a

finite outcome set. Then for every event

A e v(s) we have:

P(A) = E P(ai).
aifA
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Theorem 2. Let (S, P) be a probability space, and let

A, B 0(S). Then:

(a) P(0) = 0

(b) P(A) + P(Ii)

(c) P(A\ B) = P(A) - P(A fl B)

(d) If B c A, P(B) P(A)

Theorem 3. For all events A, B E P(S) we have:

P(A U B) = P(A) + P(B) - P(A fl B).

Theorem 4. Let (8, P) be a probability space with a uniform

probability measure. Let S have n outcomes and

let the number of outcomes in the event A be

(A). The probability P(A) of the event A is

than given by:

P(A) =

A table of random numbers was included and some problems

were done to illustrate the use of such tables.

A review of the stability of relative frequencies and the

relation between probability and relative frequency was included

in a "looking back" section.

A preview of ideas to presented from probability theory in

later course included independence and random variables.

A random variable is a mapping from an outcome set to the

real numbers. The probabilities for the images under the

mapping are determined by the probabilities of the singletons

from the original outcome set.
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6.13 Review Exercises

1. A coaxial cable from a radio station to its trasmitting

antenna is 5,000 feet in length, and has.a break which

must be located. Assuming that each foot of cable is

equally likely to have the break, what is the probability

that the break is within 2,000 feet of the station? What

is the probability that the break is not within 2000 feet

of the station? What is the probability that it is within

2000 feet of the station or within 2000 feet of the

antenna? What is the probability that it is within 4000

feet of the antenna and within 4000 feet of the station?

2. In studying the three possible outcomes of an experiment,

it was found that the second outcome was twice as likely

as the first and the third was 3 times as likely as the

second. What is the probability of the singleton

event that contains the first outcome?

3. If you select a four-digit random number from a table

of random numbers, what is the probability that:

(a) all four digits will be the same?

(b) no digit appears twice in the number?

4. If you have six purple socks and four yellow

socks mixed and dress in such a hurry that you do not

observe the colors, what is the probability that the

socks you select will be of the same color?

"12,
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5. Seven men checked their hats when they entered a restaurant.

A friend of the hat check girl removed the tags as a

prank. When three of the men returned, the hat check girl

chose three of the hats at random. What is the probability

that they belonged to those three men?

6. If you toss 5 symmetric coins, what is the probability that:

(a) exactly three will be heads?

(b) at least three will be heads?

(c) at most three will be heads?

7. An experiment consists of selecting 2 cards, one after the

other, from a set of 7 cards numbered from I to 7

(replacing the first card before selecting the second.)

(a) How many members are in an outcome set (which

contains every member of (1222 , , 7) X (1,2 7))?

(b) Draw a graph of the outcome set letting the fir,Lit

card selected be represented by x and the second by

Y.

8. Define max(xly) = x if x y and y if y x.

Define min(x2y) = x if x S y and y if yKx.

Let the random variable X map (x, y) onto max(x2y).

Let the random variable Y map (x,y) onto min(x,y).
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For example X(5,2) = 5; Y(5,2) = 2; X(4,4) = Y(4,4) = 4.

Make graphs like those below and use them to show a

mapping diagram of X:

4 .

Domain X(x,y)
3

2 .
e.g.

1

1 2

1 2 3 4 Range

Make graphs like those below and use them to show a

mapping diagram of Y:

LI.

Domain 3

.

.

Y(x,y)

2

1

2 3 4

1 2 3 LI.

Range
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Chapter 7

POLYNOMIAL AND RATIONAL FUNCTIONS

7.1 Polynomial Functions

If a spherical object is thrown upward at a velocity
of 32 feet per second, its height at a later time
can be found by the formula

h = 32t - 16t2,

where h represents the height and t the number of
seconds after the object was thrown.

Questions. (1) How many seconds will it take
for the object to return to the
ground?

(2) How high will the object go?

The above problem, while oversimplified, indicates the importance

of mathematics in studying physical phenomena such as motion. Actually

the formula "h = 32t - 16t2" describes a function

f: t > 32t - 16t2

for t > 0. Of course the variable used is of no importance; so we

could just as easily describe the function in the following way:

f: x > 32x - 16x2

with domain (x : x E R+). (P0 the set of non-negative real
0

numbers.) This particular kind of function is very important not

only in applications of mathematics but in mathematics itself,

and in this chapter we shall work with many such functions.

Consider for instance the function f defined by

f: x > x2 + 3x
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where the domain and codomain are both the set R of real numbers.

(Unless otherwise specified all functions have domain and codomain

R.) Some of the assignments made by this function are as follows:

3 32 + 3(3) =

-2 (-2)1 + 3(-2) = -2

100 (100)2 + 3(100) = 10300

This function f can be "built" or generated from some real

functions already familiar to you:

Cs : x --4-3

JR: lc

The steps in this generation may be described in the following

way:

1) What is (c3. j/0 (x)?

(x) = c3(x) ill(x)

= 3 x

= 3x

Now we have already generated a new function; call it

g. Thus,

g:

2) What is [JR.JR] (x) ?

DIOR] (x) = JR(x) JR(x)

= x x

= x2

We have still another function; call it h. That is,

h: x ---x

3) Having generated the g and h functions, we can now ask:



-73-

What is [h + g] (x) ?

+ g] (x) = h(x) + g(x)

= x2 3x

It is important to notice that the function f was generated

by only addition and multiplication of functions, one the iden-

tity function and the other a constant function. It is possible

of course to use more than two functions at the outset, as in

Example 1.

Example 1. Using addition and multiplication only,

generate a new function from the following:

cs:

jR:

Here are some of the functions that can be

generated:

(a) (cs + ci](x) = cg(x) + cif(x)

= 5 4- I

=5

Hence: (cs + 5i

(b) [c1JRj0(x) cs(x) jR(x) jR(x)

5 x x

= 5x3

Thus: [ceilliR]:

(c) From the two previous functions, we

see that:

cg + ] ](x)

530 + 5i
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Let us call this new function p,

that is,

p: x 5x3 + 5*.

An important feature of the function p in the example is that

it was generated by using only addition and multiplication of con-

stant functions and the identity function. Such a function is

called a polynomial function.

Definition 1. jR is a real polynomial function.

ca, a E R, are real polynomial functions.

Any function generated from a finite number

of the above functions, using no operation

other than addition and multiplication of

functions, is a real polynomial function.

Example 2. Is g: + 5x a polynomial function?

Since -430 + 5x = (-4)(x)(x)(x) + (5)(x),

the function g = ((c..4.JR.JR.JR] + (cs.j01,

where c_4: x

JR: x x

cs: 5.

Since g may be generated from the identity

function and constant functions, using only

addition and multiplication, it is a poly-

nomial function.

From Example 2, we know that the function g: +

5x is a polynomial function. The expression "-4x3 + 5x" is re-

ferred to simply as a polynomial. Every polynomial function has

a polynomial associated with it.
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The real polynomial function g may also be written

g: + 5y, or g: + 5t. We refer to the

corresponding polynomial -4y3 + 5y as a polynomial in y, and

to -4t3 + 5t as a polynomial in t, etc.

Example 3. The function h: x - 7x3 + 14x - 9

is a polynomial function.

The polynomial associated with this function

is "4=4 - 7x3 + 14x -

Example 4. Is x
3

a polynomial function?

The constant function c3 and the identity func-

tion JR seem to be involved here. However, in

order to generate the given function, it is

necessary to divide Ca by JR. Since this is

something other than addition or multiplication,

the given function is not a polynomial func-

tion.

Example 5. What is the polynomial associated with function

p = [(c3.3R] + + ca + [c_aJR.JRM ?

[c3.J0(x) = ca(x).JR(x) = 3.x

[c-1JRJRJ11](x) c-15(x)J11(x).JR(x)ill(x)

-5.x.x.x

cs(x) = 6

(c_e.h.j0(x) = c_.(x)jR(x)jR(x) = -8.x.x

Therefore, the associated polynomial is

3x - 5x3 + 6 - 8x2.
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Incidentally, since addition of functions is associative and

commutative, it is permissible to write the polynomial in Example

5 as "-5x3 - 8x2 + 3x + 6." It is in fact quite common to write

polynomials in this manner, so that the exponents involved appear

.

in descending order from left to right, going from the greatest

exponent to the least.

7.2 Exercises

1. Write the polynomial associated with each of the following

polynomial functions.

(a) (ceco

(b) (c6 + c2]

(c) [el JR]

(d) [el +

(e) ((c-4JRIJR] [e.g. 'JR] c-10 ]

(t) [[JRJRJRJRJR] JR]

(g) [[JR+JR+JR+JR+JR] JR]

(h) + + co)

(i) (c1241140 [cJR) c9

(j) [coh]

(k) [[JRJR] +

(1) ((chhjRJR] + + c,]

2. Write the following polynomials in descending order of expo-

nents.

(a) 3x + x5 + l (e) 4 + 3x - 7x' + 8xe

(b) -x2 -7xe + 4x (f) 3x + 7x2 -

(c) x9 + xe + x3 (g) d3k2 - x + 17

(d) -3x1 + 7 - 2x
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3. Show how a polynomial function can be generated by constant

functions and the identity function by addition and multipli-

cation.Which of the following functions are not polynomial

functions? Explain why not.

(a). f: x 2x7 + 3xs -8 (d) x

(b) g: x
x + 3

(e) x --L*4

( x tf- - x2 - 5x - 101
(c) h: x

3
x +

4. Which of the following are polynomial functions? For each

polynomial function, write the associated polynomial.

(a) DR ca]

(b) [C2 - JR]

(C) (c2 JR]

(d) (c2 + JR]

(e) (ci JR]

5. p: a nxn + a
n-1

x
n + + aix + ao

where all of the a!s are real numbers, and n E W, is a

polynomial function. Explain how it is generated from

the identity function and constant functions.

The expression "an
xn + a

n-i
xn-I + + alx + ao" is often

used when discussing polynomials in general.

6. Using the following functions (identity and constant func-

tions) generate five different polynomial functions.

JR, C.072 Cit s c
AA"

2 2
7. p:

3
+ 7x - 8 is a polynomial function.

Find the following:

(a) p(-1) (b) p(0) (c) p(3) (d) p(-4) (e) p(10)

8. (a) Explain how the definition of polynomial function in-

cludes co as a polynomial function. What is the range

of co?
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(b) Explain how the definition of polynomial function in-

cludes cl as a polynomial function. What is the range

of Cq ?

(c) [CO JR) = (d) [co jR] = (e) [c]. JR] = ?

9. (a) Are [cjR] and [JR + jR] polynomial functions?

Does (cj0x) = [jR + jR](x) for all x E R?

(b) True or false: [c3.JR] = [JR + JR + JR]

(c) Describe another way to generate the polynomial func-

tion

(JR JR '" JR]

m addends, where m E W.

10, OA) [ca + c_s] = ? (d) [[c.eJR.JR] + [eeileh]] =7

(b) [co + co] = (e) [ci.[c2.JR.JR]] =

(c) (co CcillJR1]

7.3 Degree of a Polynomial

We have already noted that a polynomial is associated with

every polynomial function, and we shall study the polynomial

functions largely by means of their associated polynomials.

First, we need to define some words commonly used in discussing

polynomials.

As in Exercise 5 of the preceding section, we shall use

a xn + a
n-1

xn-t + + aix.1 + ao,

where the a's are real numbers and n E W, to represent a real

polynomial. an is called the coefficient of x
n
1 a

11
is called
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the coefficient of xn-1, etc. More generally, if "aixi" appears

in a polynomial, "ai" is called the coefficient of "xi". The

following examples should help to make this clear.

Example 1. In the polynomial "5x3 + 7x2 - 3x + 2,"

n = 3, n-1 = 2, etc.,

a
n

a3 = 5, so that the coefficient of x3 is 5;

an = as = 7, so that the coefficient of x2 is 7;

an = al = -3, so that coefficient of x is -3;

a0 = 2.

"al)" is called the constant term, since it comes from the

constant function c
/to

, without multiplication by JR. Thus, in

the polynomial "5,0 + 7x2 - 3x + 2," of Example 1, the constant

term is "2." "an" (ar,0) is called the leading coefficient. The-

leading coefficient of "5x3 + 7x2 - 3x + 2" is "5."

Example 2. In the polynomial "4x2 + 7,"

an = as = 4, so that the coefficient of x2 is 4;

an = al = 0, so that the coefficient of x is 0;

ao = 7, so that the constant term is "7."

Definition 2. The degree of the polynomial function

p: nxn + a xn + . + atx + a0
n-1

(an00 E W) is n. This is abbreviated as

deg(p) = n. The degree of the associated

polynomial is also n. The constant poly-

nomial function co and its associated poly -

nomial "0" have no degree.
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Note: When dealing with exponents, we define x° = 1. Thus in

Definition 2, ao = aox°. Therefore, when n = 0, p:
o

so that deg(p) = 0, and deg(%) = 0.

Example 3. The degree of "-2x3 + 5x - 10" is 3.

Example 4. Deg(cs) = 0, since cs: x = 5x°.

Also of course the degree of the polynomial "5"

is zero.

Notice that in the definition of degree of a polynomial func-

tion (and polynomial) it was stated that an 0.

Example 5. Find the degree of the polynomial function

f: x + 5x - 2.

At first glance, it might seem as though we

have a polynomial function of degree 2. How-

ever, the first non-zero coefficient is 5,

so that "5x - 2" is of degree one. Therefore,

deg(f) = 1.

7.4 Exercises

1. Find the degree of each of the following polynomial functions.

(8) p: x 7x - 3 + 5x3 ( d) ca: x 8

(b) q: x 40. x - 82x2 + 14 ( e) co: x 0

(c) r: x ---0-0x4 + 7x3 + Ox2 7 10x - 13

2. Find the degree of each of the following polynomials.

(a) -x2 + 2x + 3 (f) Ox4 + 0,0 + x2 - 30

(b) 2x + 3 (g) x4 + 030 + Ox2 + 8x + 7



(c) 3

(d) 0

(e) 15x7 + 2x5 - 3

3. In the polynomial "-5x3 + 2x2 + ,)72c

(a) What is the coefficient of x?

(b) What is the coefficient of x3?

(c) What is the constant term?

(d) What is the greatest power of x appearing in the poly-

nomial?

(e) What is the degree of the polynomial?

(f) What is the leading coefficient?

81

(h) orxi°

(i) 2irr

(j) rr2

4. In the polynomial "Ox3 - 8x° + 6x + 15":

(a) What is the coefficient of x?

(b) What is the coefficient of x*?

(c) What is the greatest power of x appearing in the poly-

nomial?

(d) What is the greatest power of x having a non-zero coeffi-

cient?

(e) What is the degree of the polynomial?

(f) What is the leading coefficient?

5. Remembering that anxn + a
n-I

xn-1 + alx ao is used

to represent a real polynomial, answer the following ques-

tions:

(a) In the polynomial "5x3 - 7x2 + 4x - 8," what is a2?

(b) In the polynomial "x5 - 10," what is ao?

(c) In "x2 - 2," hat is al?
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(d) In "7," what is ai?

(e) In "-4x7 + 5x8 + 7x4 8x3 + 18x - 5," what is a7?

6. Consider the polynomial "520 - 3x - 3."

(a) What is ao? (d) What is a3?

(b) What is al? (e) What is a
1'

i E W and i > 2?

(c) What is a2?

7. Find the degree of each of the following polynomial functions.

(a) cg

(b) JR

(c) [es JR]

(d) c2

(e) c_2

(f) [02 + c_2]

(g) [JR + JR/

8. If the functions used to generate polynomial functions are

restricted to the identity function and constant functions

of type ca, a E Q, then a subset of the real polynomials,

called polynomials over the rational numbers, is obtained.

For instance,

ex + 5

belongs to the set of polynomials over the rational numbers,

since it is generated by JR, c4, aid cis. However,

Ac + 5

does not belong to the set of polynomials over the ra-

tionals, since cj- was used in its generation.

Similarly, the set of polynomials over the intel4ers is that

subset of the real polynomials whose elements are generated

by JR and constant functions ca, a E Z. For instance,
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2x + 5

is a polynomial over the integers, while

ix + 5

is not.

Classify each of the following by making checks in all appro-

priate columns.

Polynomial
over Integers

Polynomial
over Rationals

Real
Polynomial

-2,0 + 7x2 -

4x2 - Anx + 5

-x - 1

x2 + 4x + 7

7

5x + 5

5x + *

5x + 45

Axa + ,gx + 4-6

7.5 Addition of Polynomials: (P,+)

If

f: x 9x2 + 3x - 2 and

g: - 6x + 8

are real polynomial functions, what is (f + g]?

[f + g](x) = f(x) + g(x)

(9x2 + 3x - 2) + (-5x2 - 6x + 8)

9x2 - 5x2 + 3x - 6x - 2 + 8
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=(9 + -5)x2 + (3 + -6)x + (-2 + 8)

4x2 - 3x + 6.

Therefore: [f + g]: x - 3x + 6. .

Example 1. Using the functions above, find f(3), g(3),

[f + g](3).

f(3) = 9(3)2 + 3(3) - 2 g(3) = -5(3)2 - 6(3) + 8

81 + 9 - 2 = -45 - 18 + 8

88 = -55

[f + g](3) then must be 88 + (-55), or 33.

Using the polynomial found above for [f + g]:

[f + 13](3) = 4(3)2 - 3(3) + 6

36 - 9 + 6

33

Since every polynomial function has a unique polynomial asso-

ciated with it, addition of polynomial functions may be expressed

simply by addition of polynomials; for instance:

(2x2 + 3x + 7) + (-x2 + 5) = x2 + 3x + 12.

Example 2 is another illustration of addition of polyno-

mials. You should be able to interpret it as addition of poly-

nomial functions.

Example 2. (5x2 + 7x2 + 8) + (-2x3 - 5x2 + 7x + 8) =

3x3 + 2x2 + 7x + 16.

If we let P denote the set of all real polynomial functions,

is (F,+) an operational system? That is, is it true that the

sum of two polynomial functions is a polynomial function? Let
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f: x anxn + an xn
-1 +ax+ao and

g: mxm + b
m-t

x
111.1 + blx + b

o

be two polynomial functions. Then we can make the following ob-

servations about [f + g]:

(1) First, do you see that "a0 + bo" will appear in the

associated polynomial?

(2) Also, x + bsx," or "(al + b3 )x" will appear in the

associated polynomial. In other words, the coefficient

of x in the polynomial of [f + g] is simply the sum

of the coefficient of x in the polynomial of f and

the coefficient of x in the polynomial of g.

(3) In fact, it is not difficult to see that every power

of x in the polynomial of [f + g] will have a coeffi-

cient determined by adding the coefficients of that

power in the polynomials of f and g. For instance, the

coefficient of x2 will be (a2 + b2).

This sort of informal argument should make it reasonable to con-

clude that the sum of two polynomial functions is a polynomial

function. Therefore, (P, +) is an operational system.

Operational systems are best described by their properties.

One property of (P, +) is suggested by Examples 3 and 4.

Example 3. If f: x--15-2x + 5 is a real function,

then [f + co](x) = f(x) + co(x)

= (2x + 5) +0

= 2x + 5 f(x).

therefore, [f + co] = f.
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Example 4. If g: X. -x7 + ix5 + f3 is a real function,

then [co + g](x) = co(x) + g(x)

= 0 + (-x7 + ixs + 49)

= x7 + *xs + 13 = g(x)

Therefore, [co + g] = g.

The property which the examples illustrate is the identity proper-

ty of (P,+), the polynomial function co being the identity ele-

ment of the system. Also, the polynomial "0" is an identity

element for addition of polynomials. (While there is a distinc-

tion between the polynomial "0" and the real number 0, we do not

use different symbols for them; it should always be clear which

one is intended.)

Example 5. (7x4 - Ix + 6) + 0
0

7x4 - + 6.

Other properties of (P,+) are investigated in the .,xercises; no-

tice especially exercises 20, 21, 22, 23, 29.

We make one more observation about addition

of polynomial functions. If deg(p) = n and deg(q) = m, what is

deg((p + q])? The question is quite easily answered, and a

specific example should make it clear. Let p and q be as follows:

p! + 3x4 + 7x3 + 2x2 + 8x + 3

x ---4 5x2 + 9x + 2

Thus, deg(p) = 5, and deg(q) = 2. Since the polynomial for q

may also be written as "Ox5 + Ox4 + Ox3 + 5x3 + 9x + 2," the

polynomial for [p + q] is

(1 + 0)x5 + (3 + 0)x4 + (7 + 0)x3 (2 + 5)x2 i (8 + 9)x

+(3 + 2), or x5 + 3x4 + 7x3 + 7x2 + 17x + 5.
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Therefore, deg([p + q])= 5. It could not be greater than 5, since

all coefficients of both polynomials are zero for powers of x great-

er than 5. Thus, it might seem reasonable to assert that deg([p + q])

= max ( deg(p),deg(q) ). However, this is not always the case.

Suppose p and q are as follows:

p: x ---4-2x2 + 3x + 7

q: x -2x2 + 8x - 3

Here, max ( deg(p),deg(q) ) = max (2,2) = 2. However, deg ([p + q])

= 1. Sometimes, therefore, the degree of the sum of two polyno-

mials is less than the maximum degree of the polynomials being add-

ed. We may however make the following statement:

deg ([p + q]) < max ( deg(p),deg(q) ),

provided that neither p nor q nor [p + q] is the function co.

7.6 Exercises

1. Let f: x xa - 7x2 + 3x + 4 and

g: x 2x3 + 3x2 - 7x - 4

be two real polynomial functions.

(a) Find the associated polynomial for [f + g].

(b) What is [f + g](2) ?

Check by finding f(2) + g(2). (See Example 1 in Section

7.5.)

(c) What is [f g](0) ?

Check by finding f(0) + g(0).

(d) What is [f + g](-5) ?

Check by finding f(-5) + g(-5) .
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2. If f( x) = 17x2 - 13x + 22 and g(x) = -13x2 llx - 39, then

[f + g](x) =

3. ( -7x3 -12x2 + 6x + 8) + ( -6x3 - 11x + 9) =

4. (-14x + 6) + (-16x - 6) .
5. (*x3 - + 7) + (.X3 "' 7) =
6. (4xs - 6x + 3) + ( -4x3 + 6x - 3) =

7. (4Fx2 + -;oc - ,ff) + (Fx2 - Af5x + i) =

8. (xio + 1) + (x1° - 1) =
9. ( .2x4 + .7x3 - .4x) + (.8x4 + .5x3 + x2 + .7)

1 2
10. (5x2 +

4
rx +

3
+(5x2 +

1 + 1 .

11. (10x4 + 2x3 + 6) + ( -17x4 + 5x2 - 7x) =

12. (a2x2 + aix + + ( b2x2 + bix + boo) =

13, Add the polynomials: 7x2 - 3x + 5

-2x2 + 4x + 6

14. Add: -13x3 - 7x2 + 5

2x3 + 3x2 + 4x + 9

15. Add: 17x4 + 3x2 - 6x2 + 4x - 10

3x4 + 5x2 - 7

16. ( 2x2 + + ( -2x2 - 1) =
17, (29x3 - 16x2 + 42) + (13x3 + 6x - 17) =

18, ( + 2x3 - 3x2 + x +.5) + (ix4 + 2 3- 1.X23 2 6
19. ( a) ( -3x2 + 5x - 9) + ( -2x2 -18x + 2) + ( -15x2 + 22x - 8) =

(b) (14xl° + 2) + (-7x8 + + (6x° + 14) =

(c) (9x2 - 14x + 3) + (-230 + lix + 5) =

(a) (-2x2 + lix + 5) + (9x2 - 14x + 3) =
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(e) Add: 3x2 + 14x2 - 8x + 6

-2x2 + 15x - 13

7x3 - 12x2 - 10

8x2 - 14x - 2

(f) Add the following:

-7x3 + x + 4; 14x2 - 8; 9xs - 17; 24x3 - x2 - x - 1;

15x3 + 6x2

20. (a) (-3x2 + 5x - 7) + (3x2 - 5x + 7) =

(b) (-2x - 7) (2x + 7) =

(c) (;00 + ;c2 1) + (43 ;x2 + 1) =

(d) (x2 + 1) + (-x2 - 1) =

21. (a) (3x2 - 4x + 6) + (-3x2 + 4x - 6)

(b) If f: x ---4-3x2 - 4x + 6 is a real polynomial func-

tion, find a function g such that [f + g] = co.

(Remember that co is the identity element for (P,+).

Therefore, we may say g = [- f],the inverse of f.)

22. Let f: x - 3x + 7 be a real function.

(a) Find [-f].

(b) What is [f + [-f]]?

23. Let g: x 3,0 + 14x3 - 35x - 19 be a real function.

(a) Find [ r.g].

(b) What is [g + [-g]g

24. -(3x8 + 14x3 - 35x - 19) = (See Exercise 23)

25. -(-x2 - 7x + 5) = 26. -(7x4 - 5x3 + 8x2 - 14x - 8)=

27. -(17x3 - 8x + 9) = 28. -(-(-4x2 + 9x - 10))
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299 (a) What are the properties of a commutative group (S,+)?

(b) Is addition of real polynomial functions associative?

(c) Is (P,+), where P is the set of real polynomial func-

tions and " +" is addition of functions, a commutative

group?

30. (a) Is (Pz,+), where Pz is the set of polynomial functions

over the integers, a commutative group?

(b) Is (P where P is the set of polynomial functions

over the rational numbers, a commutative group?

(c) Is (PN,+) where PH is the set of polynomial functions

over the natural numbers, a commutative group?

31. If f: x ---4-3x2 - 7x + 14 and g: x -2x2 + 5x - 25

are real polynomial functions, find the polynomial associated

with (f - g].

(Hint: Since (P,+) is a group, f g = f + (-g).)

32. (2,0 7x2 + 15x + 3) - (-410 + 7x2 + 2x - 8) .

33. (1.2x4 - 3.6x2 - 5.4) - (3.7x4 + 1.8x2 - 2.6) .

34. +2 + ix - - (kx2 - - i) =

35. (vfx + 3) ( -,ffx - 6) =

36. Subtract: -2x4 + 5x3 - 12x2 - 7x + 2

15x4 - 3x3 + 7x2 + 5x - 8

37. 5x3 + 14x - 18

3x3 - 6x

33. Consider the following real polynomial functions:

f: x 5x3 - 7x + 5
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g: x -3x2 + 4x - 7

h: x3 - x2 + x -

Find the polynomial associated with each of the following

functions:

(a) ((f + g3 - h] (d) ([f - g) - h]

(b) (f + [g - h) ] (e) ((g - h) + f]

(c) (f - [g - h]] (f) - s) f]

39. For each of the following, give the degree of (f + gJ.

If, in any case, it is not possible to determine the degree

with the information given, explain why.

(a) def(f) = 5, deg(g) = 2

(b) deg(f) = 0, deg(g) = 3

(c) deg(f) = 6, deg(g) = 6

40. In the inequality deg ((p < Max (deg(p), deg(o)), why is

it necessary to require that neither p nor q nor Cp + cal be

the function c
o
?

41. What is the subgroup relationship among the groups (I),+),

(Pz,0), and (Pq,+)?

7.7 Multiplication of Polynomial Functions: (13,+,)

Suppose that
f: x x + 2

and g: x + 3

are two real polynomial functions. Then

[fgi(x) = f(x) g(x)

= (x + 2) (x + 3)

= (x + 2)x + (x + 2)3

= x2 + 2x + 3x + 6
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= x2 + 5x + 6

Thus, the product function [fg] may be characterized as follows:

[ f.g]: x + 5x + 6.

In the problem considered above, we may say that the product

of the two given polynomial functions is a polynomial function;

or the product of the polynomials "x + 2" and "x + 3" is the poly-

nomial "x3 + 5x + 6." Is the product of every two polynomial

functions a polynomial function? Two special cases are discussed

below in order to suggest an answer to this question.

1) Let

r: x x + ao and

s: x + bo

be two real polynomial functions of the first degree.

That is, al, ao, bt, and too are real numbers, with at

and b1 not zero. Then,

(2..13 I( x) = r(x) s(x) =

(a1x + ao)(bix + bo) = (a1x + ao)(bax) + (atx + ao)(b0)

= ( bt )30 + (aobt )x + ( at bo)x + ( aobo)

= (a1 bOx3 + (aobt + atbo)x + (a0b0).

Since all of the coefficients in the result are real

numbers and albs p 0 (why?) we can say that the product

of two real polynomials of first degree is a real poly-

nomial of second degree. Also,of course,the product of

two real polynomial functions of first degree is a real

polynomial function of second degree.

2) g: x a3 + as x2 + aix + ao and

h: x + bix + bo
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are two real polynomial functions with a3 and b2 not Lero. Then

[g.h](x) = g(x).h(x) =

(a3x3 + aax2 + aix + ao)(b2x2 + bix + bo) =

(a3x3 + /we + aix + ao)(b2e) + (a3x3 + Ewe + aix + ao)(bix) +

(a3x3 + 9,9,0 + aix + ao)(b0) =

a3b005 + a2b2x4 + alb2x3 + sob00 + a3b1x4 + 8,21,130 + alblx2 +

aobix + a3box3 + aaboe + albox + aobo =

(a3b2)30 + (a3b1 + aabOx4 + (a3b0 + a2b1 + albOx3 +

(a2b0 + aibi + aob2)x2 + (alb° + a0b1)x + (aobo).

Since all of the coefficients in the result are real numbers,

with a3b2 0, we see that the product of a third degree

real polynomial function and a second degree real polynomial func-

tion is a real polynomial function of degree five.

Although the above two particular proofs do not constitute-a

general proof, perhaps they do make reasonable the conclusion

that the product of two real polynomials is a real polynomial,

and therefore:

If f and g are real polynomial functions,

then [f.g] is a real polynomial function.

Furthermore, deg((f.0) = deg(f) + deg(g), provided that neither

f nor g is the function co.

Example 1. "4x4 + 3x2 - 5" is a polynomial of degiee 4.

"x2 + i" is a polynomial of degree 2.

(ix4 + 3x2 - 5) (x2 + i) =

(ix4 + 3x2 - 5) (x2) + (1x4 + 3x2 5) (t) =

ixe + 3x4 + ( -5) x2 + A.730 ( _0( =
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3x4 - 530 #10

17 5-- x4 - xa
8 4

98

ie =

Note that the degree of the result is 4 + 2 = 6.

Example, 2. (x + 3)(x + 2) = x2 + 5x + 6, as discussed earlier.

Sometimes the following "vertical" arrangement

is useful.

x + 3

x + 2

xa + 3x

+ 2x + 6

x2 + 5x + 6

Example 3. Find the product (-5x3 - x + 6)(x2 - 2).

We must remember that we are actually finding

the product of two functions:

f: x ---,.-5xs - x + 6 and

g: x x2 - 2.

For every x, (f.gi(x) = (-5x3 - x + 6)(x2 - 2).

- 5x2 - x + 6

x2 - 2

- 5xs - xs + 6x2

+10x3 + 2x - 12

- 5x6 +9x3 + 6x2 + 2x - 12

With our acceptance of the fact that the product of every two

real polynomials is a real polynomial, (P,.), where P is the set

of real polynomial functions, is an operational system. In Course

II the associative property for multiplication of func-

tions was indicated. The commutative property can be similarly

displayed. Thus for arbitrary functions f, g, h:
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[(f.O.h] = [fe[g.h]]

[fg]=[f]

That is, multiplication of functions is commutative and associa-

tive; and since polynomial functions are simply a subset of all

real functions, (P,) certainly possesses these two properties.

Another property is suggested by Examples 4 and 5 below.

Example 4. Let f: x + 5 be a real function.

Then [fci] (x) = f(x) ci(x)

= (x + 5) 1

= x + 5 = f(x)

Therefore, [ fici] = f.

Example 5. Let g: x - 3 be a raal function.

Then [c2.0(x) = cl(x) g(x)

= 1 (x2 - 3)

= x2 - 3 = g(x).

Therefore, [cig] = g.

Do you see that the constant function cl is an identity ele-

ment for (P,)? That is,

For every f e P, [clf] = [f.ci] = f.

Is (P0.) a commutative group? We have already established

associativity, commutativity, and existence of an identity ele-

ment. In order to have a group structure, we must show the exist-

ence of an inverse for each element in P. Let us take for instance

the polynomial function

p: x x2 .

Does this function have an inverse in (PI? If there is an in-

verse polynomial function -- call it q -- then we must have:

[pq] = cl
99
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However, this is impossible. p is of degree 2, and ci is of degree

0. Therefore, the degree of q -- call it n -- would have to be

such that 2 + n = 0. However, there is no polynomial of degree -2,

and therefore we conclude that the polynomial function p has no

inverse in (P,). Therefore, (P,.) is not a group.

Question. Can you identify some polynomial functions

that do have inverses in (P,)?

We have now (in this section and in Sections 7,5 and 7.6)

discussed two operations on the set P of real polynomial functions.

We have therefore a two-fold operational system (P,+,.). Let us

summarize all of the properties we have discussed together with

the following property discussed in Course II:

For every f, g, h E P, [f(g + h]] = ((fg] ± (fhi]

That is, multiplication distributes over addition.

Let f, g, and h be elements of the set P of real polynomial

functions. Then:

(1) ((f + g] + h].[f + (g + h] ] (5) ((f g] h]=[f (g II]]

(2) (co + f]=[f + co]= f (6) (c1 f]..[f . f

(3) (f [-f]]=ff-fli- f]= co (7) (f gl=[g f]

(4) (f + g]=[g + fl (8) [f [g + h]]=((f g] +

(f h]]

(P,+,.) is not a field. (Which property is missing?)

Properties (1), (2), (3), (4) yield that (P, +) is a commu-

tative group. Properties (7) and (8) imply

(9) [(g + hlf] (Df] +

We can now see that (P,+,) is a ring with unity, as defined in

Chapter 3. A ring in which multiplication is commutative

(property (7) above) is called a commutative ring. Thus (P,+)

is a commutative ring with unity. i()()



7.8 Exercises

1. Let

2.

4.

6.

9.

11. + 4)(3x - 12. (ix + 2)(3x =

13. (.2x .5)(.3x - .7) = 14. (2x8 + 5)(x4 - 3x2 + 5)

15. (x' - 2)(x" + 8) = 16. (x + 7)2

17. (x - 8)2 = 18. (3x - 10)2 =

19. (2x + 5)2 = 20. (y + 4)2 =

21. (a - 9)2 = 22. (t + ir)2 =

23. (x dg)2 =

25, (x + b)2 =

27. (x2 + 2x + 1)2 =

29. (y - 4)(y + 4) =

31. (t + 3)(t - =
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f: x x - 2 and

g: x x2 + 3x + 4

be two real functions

(a) Find the polynomial associated with (f.g].

(b) Find (f.g1(2). Check by finding f(2)g(2).

(c) Find (f.g](-3). Check by finding f(-3).g(-3).

(d) Find (f.g]( ). Check by finding f(*)g(i).

(x + 2)(x + 5) = 3. (x + 2)(x - 5) =

(x - 2)(x + 5) = 5. (x - 2)(x - 5) =

(2x + 3)(x + 7) = 8. (2x2 + x + 1)(x - 8)

(x2 + 7x + 8)(x2 - 3x + 5) = 10. (4x3 - 7)(3x2 + 7x + 8)

33. (2x + 7)(2x - 7) =

35. (6a + 7)(6a - 7) =

37. (x 4)(x - j) =

101

24. (t 16)2 =

26. (ax + b)2 =

28. (ax2 + bx + 02 =

30. (x + 6)(x - 6)

32. (a + .6)(a - .6) =

34. (3x + 4)(3x - 4) =

36. (ix +

38. (3t + J6)(3t - =
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39. (x + b)(x - h) = 40. (ax + b)(ax - b) =

41. (x + 2) (x2 - 2x + 4) = 42. (a - 5) (a2 ± 5a + 25) =

43. (z + 2)(z - 3)(z2 - 4z + 16) =

44. (n + 7)(2n + 1)(4n2 - 2n + 1) =

45. (a + b)(a2 + ab + b2) = 46. (a - b)(a2 + ab + b2) =

47. Multiply: 3x8 - 2xs + 5x4 + 330 - 7x2 + 7x + 8

10x3 + 6x2 - 3x -

48. Multiply: -5xt° + 3x' - 2x4 - 12

x2 - x3 - 9

49. -(3x5 - 2x + 7) =

51. (-1) (-x2 + =

53. (-1) (2x - 7)(3x + 8) =

54. Let

50. (-1) (3x5 - 2x - 7) =

52. -( -x2 + J) =

x x - 4

g: x + 5x + 6

h: x -x3 + 3

be real functions. Find the polynomial associated with-each

of the following functions.

(a) [[gh] + f] (f) [c.,1 g] (k) [h hl

(b) [g[h + f]] (g) (-g] (1) - [g.g]]
(c) [co g] (h) [g + ci ] (m) [-h]

(d) [ci g] (1) [g + co] (n) [0_1 h]

(e) [[f - g]h] (j) [[f g] h]
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55. Let f, g, and h be the following real polynomial functions:

f: x x3

g: x ---o. x2 + 1

h: 7 2X5 x

(a) Find the polynomial associated with f o g . ("o" means

composition.)

(b) Find the polynomial associated with JR o g .

(c) Find the polynomial associated with h o JR .

(d) Find the polynomial associated with g o h .

(e) Find the polynomial associated with h o g .

(f) Is (P, o) an operational system?

(g) What is the identity element for (P, o)?

(h) If deg(p) = m and deg( q) = n, what is deg(poq)? deg(qop)?

56. Look in the text at the properties of (P,+,.),' which are the

defining properties of a commutative ring with unity. Then

decide which of the following two-fold operational systems

are commutative rings with unity.

(a) (1,1,-F,) (41+,°)

(b) (z+,.) (g) (2 x 2 matrices, +,.)

(c) (Even integers,+,.) (h) any field

(d) (Q44-$.) (i) (N,+,)

(e)

*57. For the systems in Exercise 58 which are not commutative

rings with unity, state which of the eight defining proper-

ties hold and which do not,

7.9 Division of Polynomial Functions

Addition, subtraction, and multiplication are operations on
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the set P of real polynomial functions. We study these operations

in terms of polynomials. What about division? How, for instance

can we interpret

(x2 + 3x) x ?

In a multiplicative group (G,), any division a + b can be inter-

preted as a * b-1, where b-1 is the multiplicative inverse of b.

2 2
(For example, in (Q2.) ,

4 = i ) However, (P, ) is not a3

group (see section 7.7), and so such an interpretation here is

without meaning.

We also have interpreted

a 4. b

in other multiplicative systems in the following way:

a b = c if and only if c b = a.

This interpretation is a sensible one in the case of the poly-

nomial division problem above. We may reason as follows:

(x2 + 3x) x = q(x)

if and only if

q(x) x = x2 + 3x.

The distributive property makes it easy to see that q(x) must be

x + 3. That is,

(x2 + 3x) x = x+ 3

since

(x + 3) x x2 + 3x

The same division is shown below in a form that will be useful in

some later examples.
x + 3

x x2 + 3x

x2 + 3x
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Suppose we alter the above problem slightly, as follows:

(X2 + 3x + 2) + x.

There is in fact no polynomial function q such that q(x) x =

x2 + 3x + 2 for all x e R.

This situation is something like that in (w,.), where not

every whole number divides every other. For example, given

14 3, we can say that there is no whole number a such that

a = 14; thus, 3 does not divide 14, and 3 is not a factor of

14. We do however make use of the following division algorithm:

4 Quotient

Divisor 3 14

12

2 Remainder

Thus, 14 = (4.3) + 2. Recall that in this algorithm, we demand

that the remainder be less than the divisor; in this case, 2 < 3.

A similar algorithm exists for polynomial division, as

illustrated below for (x2 + 3x + 2) + x.

x + 3 Quotient

Divisor x x2 + 3x + 2

x2 + 3x

2 Remainder

Notice that, for all x E R, x2 + 3x + 2 = ((x + 3) x) + 2,

We cannot say that the remainder, which is the polynomial "2,"

is less than the divisor, which is the polynomial "x," since we

have not ordered the polynomial functions. We can however say

that the degree of the polynomial "2" is less than the degree of

the polynomial "x."
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Example 1. Let f: x + 8x + 5 and

p: x x + 2

be two real polynomial functions.

Find two polynomial functions q and r such that

f = ((q.p] + r]

and

deg(r) < deg(p).

x

x + 2 x2 + 8x + 5
x2 + 2x

6x + 5

x2 + 8x + 5 = x(x + 2) +

(6x + 5). However, deg(6x

+ 5) deg (x + 2). So the

process is continued.

x + 6

x + 2 [ x2 + 8x + 5 x2 + 8x + 5 = (x + 6)(x + 2)
x2 + 2x

+ (-7). And deg( -7} <
6x + 5

deg(x + 2).6x + 12

-7

Thus, the two desired functions are

q: x ---opx + 6 and

r: x

The preceding example and discussion suggest the following

theorem whose proof is omitted,

Theorem 1. Giver two real polynomial functions f and p,

p co, there exist unique real polynomial func

tions q and r, with r = co or deg(r) < deg(p),

such that f = [(pg) + ri.

Thus, for all x E R, f(x) = (p(x)q(x)) + r(x).
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Notice the word "unique" in the statement of the theorem. This

is a word we have used several times before; it means that it is

not possible to find more than one pair of functions, q and r,

meeting the,required conditions.

Example 2, p: x - 5

f: x 3x3 4x2 + 7x + 10.

Find two real polynomial functions, q and r, with

r = co or deg(r) < deg(p), such that f =

[(qp) + r],

2
x - 2

2x2 - 5 1 3x3 - 4x2 + 7x + 10

3x3
1'2

-4x2 + + 10

- 4x2 + 10

?-x

For all x E R,

3xs - 4x2 + 7x + 10 = (2x2 - - 2) +

deg( ) = 1; deg(2x2 - 5) = 2; thus deg(r) < deg (p).

0

Example 3. xa - 7x + x - 5
0

x - 5

Notice that the quotient here is the zero polyno-

mial, and r = f. Clearly deg(x - 5) < deg(x2 - 7x

+ 8).

x +5
Example 4. x - 3 I x2 + 2x - 15

x2 - 3x

107

5x - 15

5x - 15

0
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Notice here the remainder is the zero poly-

nomial. And we have, for all x E R,

x2 + 2x - 15 = (x + 5)(x - 3) + 0.

Since co is the identity in (P+), we may

write simply:

x2 + 2x - 15 = (x + 5)(x - 3).

Looking at Example 4, we may say that "x - 3" is a factor of

"x2 + 2x - 15." We may also say that "x - 3" divides "x2 + 2x -

15."

Definition 3. A polynomial function p divides a polynomial

function f if and only if there exists a poly-

nomial function q such that f = (qp).

Example 5. Does (x r) divide x4 - r4, where r E R?

x3 + x2r + xr2 + r3

x - r I xA r4

x4 - x3r

x3r - r4

x3r - x2r2

x2r2 -

era - xr3

xr3 - r4

xr3 - r4

0

Therefore, x4 - r4= (x3 + x2r + xr2 + r3) (x - r).

x - r divides x4 - r4.

Example 5 in fact suggests a general theorem which may be

stated in the following way:
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Theorem 2. (x - r) divides (xn - rn), where "x r" and

"xn rn"
are real polynomials, n E N.

While we shall not give a formal proof of this theorem, it is easy

to give an informal argument based on multiplication. Consider
...1 n-s

n
3 a n-a n-t%

the product (x - r)(xn + x r + x r + . . . + xr + r ) .

xn -i + xn-s r + x
n-s

r
a

+ . . . + xr
n-a

+ r
n-s,

x - r

x
n

+ xn
-tr + X

n-2
r
a

+ . . . + x r
n-a + xrn-t

a n-
- xn

-1
xr - x

n-a
- - r

a
- xr

n-1
r
n

x
n

r
n

Example 6. (x - r) divides (xs - rs).

xs - rs = + xsr + x2r2 + xr3 + r4)(x - r).

7.10 Exercises

1. Let f: x x2 + 7x + 5 and

p: x x - 3
be real polynomial functions. Find two real polynomial func-

tions q and r such that f = ((q.p] + r], and r = co or deg(r)

< deg(p).

What is deg(p)? What is deg(r)?

2. Let f: x --0-3x4 - x3 + 5x2 - 7 and

p: x x2 + 2x + 5

be real polynomial functions. Find two real polynomial func-

tions q and r such that f = ([ qip] + r], and r = co or deg(r)

< deg(p).

What is deg(p)? What is deg(r)?
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3. Let f: x ---)- x5 + 12 and

p: x ---4. x2
I

be Teal polynomial fUnctions. Find two real polynomial func-

tions q and r such that f = [(q0 + rJ, and r = co or deg(r)

< deg(p).

In Exercises 4 - 20, find q(x) and r(x) so that for all x E R,

f(x) = (q(x)p(x)) + r(x), and r = co or deg(r) < deg(p).

4. f( x) = xa

5. f( x) = x

6. f(x) = xa - 5

7. f( x) = xs - 8

8. f(x) = x - 2

p(x) = x

p(x) = x3

p(x) x 2

p(x) x 2

p(x) = x3 - 8

9. f( x) = xe - 7x6 + 14xe - 5x3 + 8x2 - 3x + 5 p(x) = 2

10. f(x) = 3x2 + 7x - 2 p(x) = 3x + 1

11. f(x) = x2 - 6x + 9 p(x) = x - 3

12. f(x) = xs - 3x4 + 8 p( x) = xs - 3x4 + 8

13. f( x) = 4x2 + 7x - 3 p( x) = 2x + 3

14. f( x) = 6x3 + 5x2 - 8x + 4 p(2) = 3x - 2

15. f(x) = 5x6 - 2xs + 5x4 - 17x3 + 41x2 - 19x - 2

p(x) = xs + x3 - 3x2 + 7x + 1

16. f( x) = 5x6 - 2x6 + 5x4 - 17x3 + 41x2 - 19x - 2 p(x) = 5x - 2

17. f( x) = 4x2 + 12x +9 p(x) = 2x + 3

18. f( x) = 4x2 + 10x + 9 p( x) = 2x + 3

19. f( x) = 2x4 - 2;x3 + 1420 + 4x - 16 p( x) = 4x3 - 7x2 + 8

20. f(x) = x3 + 27 p(x) = x + 3

21. Let f: x x2 - 7x + 3 and

p: x x - 2

be two real polynomial functions.

11
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(a) Find polynomial functions q and r, with r = co or deg(r)

< deg(p),such that f = [[qp] + r]

(b) Show that f(x) = (q(x)p(x)) + r(x) when x = 5

(c) Show that f(x) = (q(x)p(x)) + r(x) when x = -2

(d) Show that f(x) = (q(x)p(x)) + r(x) when x = 2

22. Let f: x--.- 2x3 - 5x2 - 8x + 14 and

p: x + 5

be two real polynomial functions.

(a) Find polynomial functions q and r, with r = co or deg(r)

< deg(p) , such that f = [(q.p) + r] .

(b) Show that f(x) = (q(x)p(x)) + r(x) when x = 1.

(c) Show that f(x) = (q(x)p(x)) + r(x) when x = 0.

(d) Show that f(x) = (q(x)p(x)) + r(x) when x = -5.

23. f: x - 12x2 + 38x + 8 and

p: x x - 5

are two real polynomial functions.

If q: x x2 - 7x and r: x 3x + 8, then f = (fqpl + r).

also,

if q: x - 7x + 3 and r: x 23, then f = [(q.p] + r].

Explain why this does not contradict the word "unique" in

Theorem 1.

24. Recall what is meant by saying that a polynomial p divides a

polynomial f. (See the definition in Section 7.9). Then

answer "true" or "false" to each of the following state-

ments concerning real polynomials.
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(a) x2-3 divides x2-3 (h) x-5 divides x2-10x+25

(b) x+6 divides x2+12x+36 (i) x2-10x+25 divides x3- 10x2 +25x

(c) x+6 divides x2+12x+30 (j) x-5 divides x3- 10x2 +25x

(d) x-2 divides x2-4

(e) x+2 divides x2+4

(f) 7 divides x2+4

(g) 0 divides x2+4

(k) x-a divides xe-ae

(1) x+a divides xe+ae

1
(m) x--1 divides x2-17.

2 4

(n) 30-* divides x2+1

(o) If deg(p) > deg(f), then p does not divide f.

(p) If deg(p) = deg(f), then p divides f.

25. Answer "true" or "false" to the following statements about

the relation "divides" in the set W of whole numbers.

(a) The whole number 1 divides every whole number.

(b) Every whole number except 0 divides itself.

(c) If a divides b, then b divides a.

(d) The whole number 5 divides every whole number.

(e) If a divides b, and b divides c, then a divides c,

26. Answer "true" or "false" to the following statements about

the relation "divides" in the set P of real polynomial func-

tions,

(a) The function 01 divides every real polynomial function.

(b) Every real polynomial function except co divides itself.

(c) If f divides g, then g divides f.

(d) The function cs divides every real polynomial function.

(e) If f divides g, and g divides h, then f divides h.

27, Show that "x r," r E R, divides "xe - re" by finding q(x)

such that q(x).(x - = xe - re.
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28. Show that "x - r," r E R, divides "x7 - r7" by finding q(x)

such that q(x).(x - = x7 - r7.

29. From Theorem 2 we know that x r divides x3 - r3, where

r E R.

(a) If r = 2, we have: x - 2 divides x3 - 8

Find q(x) such that q(x).(x - 2) = x3 - 8.

(b) If r = -2, we have: x + 2 divides x3 + 8.

Find q(x) such that q(x).(x + 2) = x3 + 8.

(c) If r = 0, we have: x divides x3.

Find q(x) such that q(x).(x) = x3.

30. Find, either by the division algorithm or by using Theorem 2,

q(x) such that q(x).(x - = xso - r10 .

7.11 Polynomial Factors and The Factor Theorem

In Chapter 4 of Course II, entitled "Fields," certain ex-

pressions -- which we may now call real polynomials of degree 2 --

were factored. For instance, the polynomial

x2 + 3x - 10

may be expressed as the product

(x + 5)(x - 2).

This means that for every x e

x2 + 3x - 10 (x + 5)(x - 2).

It also means of course that the real polynomial function

f: x x2 + 3x - 10

is the product of the following two real polynomial functions:

g: x x + 5

h: x x - 2
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Factoring can also be used in solving certain eqlations, a

procedure studied in Course II and reviewed in Example 1 below.

Example 1. Solve "x2 + 3x - 10 = 0."

(The domain is to be taken as the set R of real

numbers.)

For every x E R, x3 + 3x - 10 = (x + 5)(x - 2).

Therefore,

x2 + 3x - 10 = 0

if and only if

(x + 5)(x - 2) = 0

if and only if

x + 5 = 0 or x - 2 = 0

if and only if

x = -5 or x = 2.

The solution set is (-5, 2).

Question. Is it possible to solve the equation

3x2 + 14x + 8 = 0

by making use of factoring?

The answer to the question above depends upon whether or not

we can find useful factors of "3x2 + 14x + 8." We could, for in-

stance, express "3x2 + 14x + 8" as "W(6x2 + 28x + 16)." However

this is not useful since solving "*(6x2 + 28x + 16) = 0" is no

easier than the original problem. What kinds of factors then are

useful? The original polynomial is a polynomial over the inte-

gers (that is, the coefficients are integers). In such a case

we most frequently want the factors to also be polynomials with
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integral coefficients. In particular, in factoring a second de-

gree polynomial over the integers, we look for factors of form

(ax + b)(cx + d), where a, b, c, and d are integers.

Since factoring is multiplication "in reverse," let us begin

by multiplying

(ax + b)(cx + d),

where "ax + b" and "cx + d" are first degree polynomials over

the integers,

(ax + b)(cx + d) = (ax + b)(cx) + (ax + b)(d)

= (ac)x2 + (ad + bc)x + (bd).

We may think of the coefficients of this product in terms of two

integers R and S such that:

R = ad

S = bc.

Then we have:

R + S = ad + bc (= coefficient of "x")

R S = (ad)(bc)

= (ac)(bd) (= product of coefficient of

"x2" and the constant term)

Example 2. Find factors of the form

(ax + b)(cx + d) (a, b, c, d E z)

for the polynomial 3x2 + 14x + 8.

If there are such factors then there must be two

integers R and S such that

R + S = 14 (coefficient of "x")

R S = 3.8 (product of coeffi-

=

9

cient of "x2" and the

constant term.)
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Since 12 + 2 = 14, and 12 2 = 24, there

are two such integers. Let R = 12, S = 2.

Then we have

3x2 + 14x + 8 = 3x2 + (11 + S) x + 8

= 3x2 + (12 + 2)x + 8

3x2 + 12x + 2y + 8

= 3x(x + 4) + 2(x + 4)

= (3x + 2)(x + 4)

We have therefore "factored" the polyno-

mial "3x2 + 14x + 8."

Question. In Example 2, would it matter if you let

R = 2 and S = 12? Try it and see:

Example 2 allows us to answer a question asked earlier. We

may now solve the equation "3x2 + 14x + 8 = 0" by considering the

equivalent equation "(3x + 2)(x + 4) = 0." The solution set is

2
easily seen to be f- - 4).

Example 3. Factor "6x2 + x - 35."

If "6x2 + x - 35" is the product of factors of

the form (ax + b) (cx + d), a, b, c, d E Z, then

there must be integers R and S such that

R + S = 1; RS = -210.

15 and -14 are two such numbers. Let R = 15 and

S = -14. Then

6x2 + x - 35 = 6x2 + (R + S)x - 35

= 6x2 + (15 + (-14))x - 35

= 6x2 + 15x - 14x - 35

= 3x(2x + 5) - 7(2x + 5)

116 = (3x - 7)(2x + 5).
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Example 4. Factor "x2 + 2x + 3."

Are there two integers R and S such that:

R + S = 2 and R S =3 ?

Since no such integers exist, "x2 + 2x + 3"

has no factors of form (ax + b)(cx + d), with

a, b, c, d E Z. Therefore, "x2 + 2x + 3" is

said to be prime over the integers.

It is important to understand in Example 3 that the polyno'

mial "x2 + 2x + 3" is called prime because it does not have factors

of a certain type. A similar situation exists in the set N of

natavelnumberb. We say for instance that the number 5 is prime be-

cause there are no nature]. numbers a and b (other than 1 and 5)

such that ab = 5. If we use rational numbers, however, 5 does

have factors -- for instance, 5 = * 10.

Does "x2 - 3x2 - 4x + 12" have a, factor of form "ax + b,"

a, b E Z? All of the preceding examples have dealt with polyno-

mials of second degree; the predent question is about a polyno-

mial of degree three. There is a fairly easy way to answer cer-

tain questions of this kind. See if you can follau the steps:

Let p be the real function such that, for all x E R,

p(x) = x2 3x2 - 4x + 12.

Then p(2) = (2)2 - 3(2)2 - 4(2) + 12

= 8 - 12 - 8 + 12

= 0.

Since p(2) = 0, x - 2 is a factor of x3 - 3x2 - 4x + 12.

The steps above indicate that x - 2 is a factor of p(x) =

x3 3x2 - 4x + 12 because p(2) = 0. This is a specific applica-

tion of the following theorem:
117
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Theorem 3. (Factor Theorem)

Let p: x anxn + an_ixn-1 + . . . + alx + ao

be a real polynomial function. Then x - r, r E R,

is a factor of p(x) if and only if p(r) = O.

Proof. Suppose x - r is a factor of p(x); that is, x - r

divides p(x). Then there is a polynomial func-

tion q such that

p(x) = (x - 00q(x) for all x E R.

Then p(r) = (r - r).q(r)

= 0 dr)

=0

On the other hand, suppose p(r) = O. Then

p(x) = p(x) - 0

= p(x) - p(r) (SPE)

= (a xn+a
n-%

x
n-1 +,+ aix + ao)

- (anrn + an_1 rn
-1 +...+ air + ao)

= a (xn - rn) + a
n-s

(xn-I - r
n-1)

+.+ al (x - r).

Since x - r divides xn -
rn, xn-1 rn -1

etc., we see that x - r divides p(x).

(Theorem 2)

Example 5. Is x - 3 a factor of p(x) = x3 + 2x3 - 9x - 18?

Since p(3) (3)3 + 2(3)2 - 9(3) - 18 = 27 + 18

- 27 - 18 = 0, the answer is "yes." In fact, di-

vision shows that

x3 + 230 - 9x - 18 = (x - 3)(x2 + 5x + 6).
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And since x2 + 5x + 6 = (x + 2)(x + 3), wo can

write finally

x3 + 2x2 - 9x - 18 = (x - 3)(x + 2)(x + 3).

7.12 Exercises

1. p: x x2 + 3x - 28

is a real polynomial function. Find two first degree poly-

nomial functions f and g such that p = (fg].

2. q: x 3x2 + 7x - 20

is a real polynomial function. Find two first degree poly-

nomial functions f and g such that q = [f.g].

In Exercises 3 -- 15, express each second degree polynomial as

the product of factors (ax + b) (cx + d), a, b, c, d F Z, if possi-

ble.

3. x2 - 11x + 24 10. 14x2 + 17x - 6

4. x2 + 14x + 33 11. 15x2 - 7x - 2

5. x2 - 7x - 8 12. 4x2 + 3x + 2

6. x2 + 2x - 35 13. 6x2 - 55x - 50

7. 2x2 - llx - 21 14. 6x2 - 7x - 24

8. 4x2 + 17x - 15 15. 9x2 + 25x - 6

9. 5x2 + 12x + 4

16. Factor each of the following polynomials.

(a) x2 - 4 (Hint: x2 - 4 = x2 + Ox - 4. Here R + S = O.)

(b) x2 - 16

(c) n2 - 100

(d) 4x2 - 9

(e) 25y2 - 49

(f) x2 b2

(g) a2x2 b2

119
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17. Factor each of the following polynomials.

(a) x2 + 6x + 9

(b) a2 + 10a + 25

(c) x2 - 8x + 16

(d) x2 - 24x + 144

(e) x2 - tax + a2

(f) x2 + tax + a2

18. Each of the polynomials in Exercise 17 is called a perfect

square, polynomial since it may be factored in the form

(x + a)2

Tell what must be added to each of the following polynomials

so that the result is a perfect square polynomial.

(a) x2 + 14x (d) x3 + x

(b) x2 + 18x (e) x2 + bx

(c) x2 + 5x (f) x2 +
a
x

19. Decide which of the following natural numbers are prime.

(a) 14 (b) 7 (c) 101 (d) 109 (e) 51

20. Decide which of the following polynomials are prime (over the

integers).

(a) 5x2 + 2x + 1 (d) x2 + 9

(b) 16x2 - 2x - 3 (e) x2 + x

(c) x2 - 9

21. Let p: x x3 -2x2 - x - 6

be a real polynomial function.

(a) What is p(3) ?

(b) Does "x - 3" divide "x3 - 2x2 - x - 6"?

(c) Find a polynomial function q such that for all x E R,

x3 - 2x2 - x - 6 - (x - 3). q( x)
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22. Let p: x -x3 - x2 - 3x - 10

be a real polynomial function.

(a) What is p(2)?

(b) Does "x - 2" divide "-x3 - x2 - 3x - 10'11

(c) What is p(-2)?

(d) Does "x + 2" divide "-x3 - x2 - 3x - 10"?

(Hint: x + 2 = x - (-2); the Factor Theorem may be used.)

(e) Find a polynomial functiln q such that for all x E R,

-x3 - x2 - 3x - 10 = (x + 2).q(x).

1
23. Let p: x Fr- be a real polynomial function.

(a) What is p(i)?

(b) Does "x - divide "x3 - tit?

(c) Find a polynomial function q such that for all x E R,

x3 - = (x - i).q(x).

24. Let p: x - 7,0 + 7x + 15 be a real polynomial function.

(a) Show that "x - 5" divides p(x).

(b) Express p(x) as the product of three first degree poly-

nomial factors.

(c) Sketch the-graph of -the polynomial-function p.

25. q: x 7x2 - 7x - 15 is a real polynomial function.

(a) Sketch the graph of q. (Hint: q is the additive in-

verse of the function p in Exercise 24.)

(b) Express q(x) as the product of three first degree poly-

nomial factors.
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7.13 quadratic Functions and Equations

The graph of the function

f: x x2

is one we are already familiar with (see Figure 7.1). We have also

Figure 7 .1

f: x x8

x

Figure 7.2

g: x fx2

seen the effect of the real number a in the graph of a function

For instance, the graph of

t: X ax8

g: x

appears in Figure 7.2,

Figure 7.3 shows the graph of the function

(0,41/2

h: x

x
(3,0)

Figure 7 .3

h: x x - 3 2 122

- 3 2

x x - 3) 2 2
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Notice that the "size and shape" of the graph of h is the same as

that for g. The two graphs are in fact congruent. Every point

on the graph of h: x - 3) 2 can be obtained by shifting

a point of the graph of g: x ix° three units to the right.

That is, the graph of h: x - 3) 2 can be obtained from

the graph of g: x by a translation of three units to

the right, or more precisely, by the translation T3,0.

Figure 6.4 shows the graph of the function

x 0.*(x - 3)2 + (-2).

It is conzruent to the graph of h: x---i(x - 3) 2 and can be

obtained from it by a translation of two units downward, or more

precisely, by T0,..2.

Comparing Figures 7.2, 7.3, and 7.4, we see that translating the

graph cf g: x-*X2 by T3,_2 results in the graph of

w: x - 3) 2 +

A polynomial function of second degree is called a quadratic

function. The function f: x x2 is the basic quadratic

function. And the graph of a quadratic function

U: x--s-a(x - h)2 + k

can be obtained from the graph of

x ax2

by the translation Tye

Example 1. Draw the graph of the quadratic function

ss x 3(x + 5)9 + 7.

Since 3(x + 5) 2 + 7 = 3(x - (-5)) 2 + 7 for all

x, the graph of the given function can be obtained

123
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from the graph of r: 3x2 by T_5,7.

Both graphs are shown in Figure 7.5.

Figure 7.5

Example 2. What are the zeros of the function

w: x - 3)2 - 2 ?

The graph of this function is shown in Figure 7.4,

and it indicates that there should be two zeros.

They may be found as follows:

*(x - 3)2 - 2 = 0

i(x - 3)2 = 2

(x - 3)2 =4

x - 3 jT or x - 3 = -JT

x - 3 2 or x - 3 -2

x = 5 or x = I

Therefore the zeros of the given function are.

1 and 5.

Example 3. Solve the quadratic equation 2x2 + 2x - 1 = 0

This is the same as finding the zeros of the

function

f: x 2x2 + 2x - 1.
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First we try to write the polynomial in the form

a(x - h) 2 + k.

2x2 + 2x - 1 = 2(x2 + x ) - 1

= 2(x2 + x + 1) - 1 -

= 2(x + -
3

2

To find the zeros we proceed as follows:

2(x + *)2 - 3- = 0

2(x + =
3

(x + i)2

x+ = or x + =-J3

x + or x = - -

In Example 3, * was added to the expression in parentheses

so that the resulting expression, "x2 + x + to" is a perfect

square. (See Exercises 17 and 18 of Section 7.12.) However, we

were really adding *, since the multiplier "2" distributes over

the sum in parentheses, and (2)(t) = Therefore, in order not

to change the given function, we also subtracted The real

solutions of any quadratic equation -- provided they exist -- can

be found by the process (called "completing the square") used in

Example 3.

7.14 Exercises

1. On one set of axes, sketch the graphs of the functions asso-

ciated with the following quadratic polynomials:

(a) x2 (b) -x2 ix2 (d) Atx2 (e) 3x2

(f) -3x*
125
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2. On one set of axes, sketch the graphs of the functions asso-

ciated with the following quadratic polynomials:

(a) irx2 (b) i(x - 2)2 (c) +(x + 2)2

3. On one set of axes, sketch the graphs of the functions asso-

ciated with the following quadratic polynomials:

(a) (x - 2)2 (b) - 2)2 + 3 (c) +(x - 2)2 - 3

4. Given the graph of f: x 5x2, tell which translation

will give the graph of the function associated with each of

the following polynomials:

(a) 5(x + 6) 2 + (d) 5(x + 7) 2 - 10

(b) 5(x - 2)2 + 4 (e) 5x2 + 2

(c) 5(x - *)2 - 3 (r) 5(x + 2)2

5. Sketch the graph of each of the following functions.

(a) 4: x ---4 (x - 3)2 + 2 (e) fe x ---*. 3(x - )2 -

f2: x (x - 3)2 - 2 (f) fe: x 3(x - i)2 + 0

(c) f3: x 2(x + 4)2 + 1 (g) f,: x --o- 5(x - 2

(d) f4: x 2(x + 4) 2 - 1

6. Sketch the graphs of the functions associated with the follow-

ing quadratic polynomials, by putting each in the form

a(x - h) 2 + k.

(See Example 1 of Section 7.13).

(a) x2 + 5x + 6

(b) x2 +3x +9

(c) 2x2 + 9x - 5

(d) 3x2 - 5x - 12

(e) 2x2 + 7x + 3

19

(f) 2x2 + 3x + 7

(g) 9x2 + 15x - 14

(h) 2x2 + 5x + 1

(i) x2 + 3x - 1

(j) x2 + 3x + 1

(k) 3x2 + 4x - 2
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(A) ax2 + bx + c (where a, b, c are real numbers, a / 0).

(The result of Exercise 6(A) is to establish that every

quadratic polynomial can re expressed as

a(x - h) 2 + k.)

7. Solve the following quadratic equations if possible.

(a) x2 - x - 12 = 0 (e) x2 +x+1= 0

(b) x2 + x - 1 = 0 (f) 2x2 + x - 3 = 0

(c) 7x2 + 20x - 3 = 0 (g) 3x2 + 2x - 5 = 0

(d) 2x2 + x - 1 = 0 (h) 2x2 - 7x + 3 = 0

(i) ax2 + bx + c = 0 (where a, b, c are real numoers, a / 0).

(The result of Exercise 7(i) is a formula, called the

quadratic formula which can be used to find the real

number solutions of any quadratic equation, provided

they exist.)

8. (a) Sketch a graph of a quadratic function f whose associated

function equation f(x) = 0 would have exactly two real

solutions.

(b) Sketch a graph of a quadratic function g whose associated

function equation g(x) = 0 would have exactly one real

solution.

(c) Sketch a graph of a quadratic function h whose associated

function equation h(x) = 0 would have no real solutions.

7.15 Rational Functions

r: x
5

x-

is a real function provided that the domain does not include the

cr)
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number 1. (Why must 1 be excluded?) The greatest possible subset

of the real numbers which may serve as domain of this function is

R\(11. This real function r may be generated by the functions

cst x 5

in the following way:

That is,

jR: x x

C : X

= re.s +
+ c-i] 1.

c (x
r(x) = 4x) )

+ c_1(x).

Although the function r above is generated by the identity

function and constant functions, it is not a polynomial function,

since the operation of division of functions is used in the gene-

ration. (Review the definition of polynomial functions, in Section

7.1.) r is, however, a real rational function. (In this chapter,

all real rational functions have codomain R.)

Definition 4. jR is a real rational function.

ca, a E R, are real rational functions.

Any function generated from one or more of

the above functions, by using no operations

other than addition, multiplication, and

division of functions, is a real rational

function.

The expression
5

associated with the function r: x 5
-

,
' x 1

is called a rational expression.

Example 1. The real function f: x
x +

7
2
with domain

x

(x: x E R (7 }) is a. real rational function.

°x + 2" is a rational expression.
7
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The graph of a rational function is not always an unbroken

curve. Shown in Figure 7.6 is the graph of the rational function

discussed earlier:

r: x
- 1

with domain R\(1). Note the following points which help in sketch-

ing the graph:
A

r:

Figure 7.6

'x

(1) The niimbar 1 is not in tha domain of r. Co the flashed lino

x = 1" has been drawn. The graph cannot intersect this line.

(2) r(0) = -5. Therefore, the point (0,-5) belongs to the graph.

(3) As lx1 becomes very large, r(x) gets "closer and closer" to

zero. For instance:

r(100) = 31-9. ; r(1000) = 9+9 ; r(-100) = !-5
3.1337'

r(-1000) =

5
10 -0-1

129
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(4) By taking x close enough to 1, Ir(x)1 can be made as great as

desired. For instance,

r(1.1) = 50; r(1.01) = 500; r(.9) = -50; r(.99) = -500

These four points lead us to conclude that the graph of r

has two asymptotes. The line "x = 1" is a vertical asymptote,

and the line "y = 0" is a horizontal asymptote. Thus, the graph

of this rational function is not a smooth, unbroken curve. How-

ever, we assume that, except for a break in the neighborhood of

x = 1, it is.

The rational function r may also be taken as the quotient

of the two polynomial functions:

p: x --- 5 and

q: x

And this suggests the following alternative definition of a real

rational function.

Definition 5. If 2 and 2. are real polynomial functions,

then [j]

is a real rational function r.

r(x) = q xH- for all x E R, except those

for which q(x) = 0. Therefore, the

domain of r does not include zeroes of 2..

x2 5x
Example 2. t: x

+
x- 12

is a real rational function. It is the

quotient of the following polynomial

functions:

130

p: x x2 + 5x

q: x x2 - x - 12
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Domain of t = R\(4,-3) since 4 and -3 are zeros

of q.

Example 3. Is k: x ---*-34-fi with domain R\ ( -2) a real
2

rational function?

It is, since it is the quotient of the polyno-

mial functions

c0: x 0

q: x 3 + 2x

Example 4. Sketch the graph of the real rational function

t: x 2x + 3

5with domain Rv 79il. The line "x = is a ver-

tical
3

tical asymptote. t(0) = - 3 2 and t(- = 0.

3 3
So, the points (0, - 3) and (- 0) are on

the graph. Now, for all x 0,

t(x) = x(2 + 31) 2 +

x(4 -x) 4 -X
Therefore, as kibecomes very large, t(x) gets

"closer and closer" to 2/4,or 1/2.

The line "y = *" is a horizontal c.symptote (see

Figure 7.7).
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7.16 Exercises

1. (a) Is every rational number a real number?

(b) Is every real number a rational number?

(c) Is every rectangle a square?

(d) Is every square a rectangle?

(e) Is every polynomial function a rational function?

(0 Is every rational function a polynomial function?

2. Identify each of the following as polynomial function, ra-

tional function, both, or neither, by checking the appro-

priate columns. Specify a domain.

Polynomial
Function

Rational
Function

(a) fl: x

(b) f2: x x2

(c) f3: 25-x
x

(d) fs:

(e) f5:

X 2x

x + 2

(f) fe: x 47
( g) f.,: x x2
(h) fe: x

iJA r-1
ILA, 19 i

(j) gl: + 7x2

-ix + 3

(k) g2: x x5+7x-2

(1) g3: x --013c1 + 2

132



- 129 -

3. Specify the greatest possible subset of the real numbers

which may serve as domain of each of the following functions.

(a) h1: x ,27

( b) h2: x 2
x 3

(c) h3: x -DB- X - 3
x + 5

( d) h4: x x 5
x + 5

(e) h5: x----. x2 + 3x + 5

x -
he: x x2 + 4x

2
- 21

3x(g)
( x+2)( x-5) ( x-F*)

x + 7
(h) he: 2x(x-3)(x+12)(x+,M)

In Exercises 4 -- 12 sketch the graph of the given function.

Be sure to draw asymptotes, and to locate all points where

the graph intersects the axes. Specify a domain for each

function.

4. f: x --0- 1
x

5. g: x -4. 1

6. h:
2

1
n: x-0- za+ 2x - 15

10. 11 x

11. q: x x + 3
r="-ff

r: x --0-*12.7. it: x x + 2 x2 x - 6

8. m: X --0-

7.17 PAerations with Real Rational Functions

Let 2
f: x 3 (Domain of f = R \[ -31)

g: x x - 5 (Domain of g = R\(5))

be two real rational functions. Then

+ g](x) = f(x) + g(x)

133
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= 7477(-ei) 37215C4
2(x - xSx + 3)

(x + 3)(x 5 (x + 3)(x - 5)

2x - 10 + x2 + 3x
- 5

x2 + 5x - 10
= 7- 2x - 15

This example suggests that the sum of two real rational functions

is a real rational function. Care must be taken about the domain,

however. Since [f + g](x) = f(x) + g(x), it is obvious that the

domain of [f + g] cannot include numbers that are not in the do-

main of f or not in the domain of g, Thus, in the above example,

the largest possible domain for [f + g] is R\( -3,5).

x -x 0
Example 1. x + 2 x + 2= + 2

Notice that for all x 4 -2,

0
x + 2

= 0

For this reason, we may think of " x " and " -x " as associated
x + 2 x + 2

with inverse functions under addition. And this gives us a way

to interpret subtraction of real rational functions.

Example 2. 2x + 3 x
4

3 -x
. le if 4

X4 + 4x + 4 R-77 x- I.
2X

-r 4 X 2

2x+3 4_ _macjx+2N
X* 1-4x+4 + k+2`3571

2x+3 -x2-2x
x2 +4x +4 x2 +4x+4

Example 3. Let f: x x and

g: x x2 + 5x - 14

-x2 + 3
(x / -2)

xa + 4x + 4

1343x2
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with domain of f = R\(-2,21 and domain of g = R\{0} be two real

rational functions. Then

[fg)(x) = f(x) g(x)

x x2 + 5x - 14= ,
!Ix2

x . (x + 7)(x - 2)
(x + 2)(x - 2) 3 x-x

= x(x + 7)(x - 2)
+ 2)(x - 2)

= x(x - 2)
x(x - 2)

1 x + 7

= x + 7
.5x( x + 2)

X 23-1777T.F

Thus, the product of the two real rational functions is a real

rational function. The greatest possible subset of R which may

serve as domain in this case is R\(02-2,21 since both f(x) and

g(x) must be defined in order for the above development to have

meaning.

Example 4. x2 + 3 x - 2 (x2 + 3)(x - 2)
7 . 2 R 7 7 7 5 (x - 2) (x2 + 3)

= x2 + 3 . x - 2
x - 2

= 1 x / 2.

From Example 4, we see that the two given functions multiply

to give the multiplicative identity function ct (except when x = 2).

For this reason we may consider "x2 + 3" and "x - 2 "to be asso-
7E-=-ff 71777

ciated with inverse functions under multiplication. And this in

turn gives a way to interpret division of real rational functions.
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Example 5.

x2 - 9 x2 + 6x + 9 x2 - 9 x2 - llx + 30
74---775 ' x2 - lix + 30 R77:77 x2 + 6x + 9

= (x 3)(x .

x( x - 5)- 3)( x: +

(x + 3)(x - 5) (x - 3)(x - 6)
(x + 3)(x - 5) x(x + 3)

1 (x :L3)( x 6)
x( x +

x2 - 2x + 18 x # 0, 5, 6 -3+ ix ,

Notice especially in Example 5 that, even though the number

-3 is in the domain of both of the original functions, it is not

in the domain of the quotient function. The reason for this of

2 - llx
+ 9
+ 30

,
course is that we multiply by x

2 + 6x and -3 is riot in the

domain of this function.

We have now seen that real rational functions -- and their

associated rational expressions -- can be added, subtracted, mul-

tiplied, and divided. At all times however it is important to

specify the domain; we shall usually use the greatest possible

subset of R. (As in the case of rational numbers, division by

the function c
o
is prohibited)

7.18 Exercises

1. Each part below consists of two problems, one using rational

numbers and one using rational expressions. Express the result

as a rational number or expression.

2 4 3 5(a) +
x + 2 x - 5

(b)
3 + 4

n-
2x

x + 2 + xs + 4x + 3
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2. f: x
47

x
g: x TT-3_

h: x x2
Yel=4x - 21

are real rational functions. Find expressions for each of

the following functions; and in each case, state the domain.

+ 2 x + 5
- 12 xd - x

x + 2 x2 - 4
x 5x3

(a) [f + g]

(b) [f - g]

(c) [f g]

(d) [f + h]

(e) [h - g]

(f)

(g) [WOO ]

3. (a) Draw the graph cf the real rational function f: x
1
x '

with domain RVOl.

(b) Explain how the graph of g: x--,--c153, with domain R\[510

can be obtained by a translation of tha graph of f.

(c) Find a rational expression for [fg], and state the do-

main of this function.

(d) True or False: For all x E R, x = 1.

4. (a) Draw the graph of h: with domain R\ (0 }.

(b) Explain how the graph of h can be obtained by a reflection

of the graph of f (in exercise 3),

(c) Find d rational expression for [f + h], and state the

domain of this function.

(d) True or False: For all x E R,
2

0.
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In Exercises 5 -- 16, add, subtract, multiply, or divide (as in-

dicated) the rational expressions. State all values of the varia-

ble which must be excluded (that is, which are not in the domain

of the associated rational functions).

x - 2 , 3x
5. 11. i÷ ix

. .--0- -

6.
2x x2

12.
x2 - 8 3

x - 2 P7.77 3x + 6 x- 2
3.x

7. x2 - 9 x2 - 5x + 6 13. 2
+

x - 1
5x - 23E-2---7 ' x2 - bx + 9 x + 1

1 2x 1 - x
8. 7.--2 x - 2 14. 7-----X + 1 5x - 2

x - 2 . 2 - x
9* x

x - 2 x - 2
10. 70-74773.

7.19 Sunrriam

la x+2 x-5 x2+14112
x-5 T 7r)-74

x16. -
1632 x-3 x-5

A polynomial function p is a real function such that

p(x) = anxn + an _lxn-1 + . . . + aix + ao

for every x E R, where n E W and ai E R (i = 00...0n). Every

polynomial function may be generated from the identity function

and a finite Lumber of constant functions by using only addition

and multiplication of functions.

The expression "anxn + an xn-1 +...+ aix + ao It is a poly-

nomial associated with a polynomial function. Assuming anA),

the degree of the polynomial is n. ai is the coefficient of xi

(i = 0,...,n), an is the leading coefficient, and ao is the con-

stant term.

If P denotes the set of real polynomial functions, then (P,+)

is a commutative group, (P,.) is an operational system but not a
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group, and (P,+,.) is a commutative ring with unity.

If p and q are not co, then deg([p + q])c max( deg(p),deg(q) ),

and deg(p q) = deg(p) deg(q) .

Given two real polynomial functions t. and p, with p / co, there

exist unique polynomial functions q and r, with r = co or deg(r)

< deg(p), such that

f = ap.q] + ri.

A polynomial function of degree two is called a quadratic

function. A quadratic function has at most two real zevnsa and

a quadratic equation has at most two real solutions.

The graph of "a(x - h)2 + k" may be obtained from the graph

of "ax" by the plane translation Th,k.

A quadratic polynomial "a2x2 + aix + ao" (at), al, as .E Z) which

does not have factors of type (ax + b)(cx + d), a, b, c, d C Z, is

said to be prime over the integers.

If p(x) = anxn + an_1 xn-1 +...+ alx + ao, then x - r, r E R,

is a factor of p(x) if and only if p(r) = 0.

A real rational function is the quotientAof two real poly-

nomial functions. The domain of a rational function does not in-

clude any number x for which q(x) = 0. The sum of two rational

functions is a rational function as is their difference,product

and quotient.

7.20 Review Exercises

1. Identify each of the following as a polynomial, a rational

expression, both, or neither.

(a) x2 + 3
(f) x 2
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(b) I x ' + 3 (g) x3 + 4x2 - x +

(c) + 3 (h)

(d) ix (i) [x]

(e) 3 (J) 5
x

2. (-3x2 + 5x + i) + (7x3 + 2x2 - 4x -

3. (x2 - 3x + 7)(x - 12) =

4. + 7x + 5) - (4x2 - 10x + 1) .

5. (x + ,P)(x - jff) =

6. (3x + 7)3

7. (2x - 14)(3x2 + 7) =

8. (4x2 - 8x2 - 10) + (-430 + 8x2 + 10)

9. (430 - 8x2 - 10) - (-4,0 + 8x2 + 10) =

10. (x - 7)3 =

11. For each of the following pairs of polynomials, f and p, find

polynomials q and r, with r = co or deg(r) < deg(p), such

that f = [ [p.qj + r].

(a) f(x) = 4x2 - 7x + 10, p(x) = 2x + 5

(b) f(x) = x3 - 8, p(x) = x - 2

(c) f(x) = x3 - 8, p(x) = x - 1

(d) f(x)' = x2 + 2x - 3, p(x) = 2x - 5

12. Find factors, if they exist, of the form (ax + b)(cx + d),

a, b, c, d E Z. for each of the following polynomials.

(a) 6x2 + 17x - 14 (b) 6x2 + 9x - 14 (c) 25x2 - 20x + 4

13. Write each of the following quadratic polynomials in the form

"2(x - h)2 + k." Then tell how the graph of the associated

function can be obtained from the graph of f: x --.-2x2.
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(a) 2x2 + 4x (b) 2x2 - 7 (c) 2x2 + x + 5 (d) 2x'3-3x+8

14. On the same set of axes, sketch the graphs of the following

functions.

(a) f: x > ix2 (b) g: x
1

> 2.(x - 3)2 (c) h: x > ;1(x+3)2

(d) k: x > .(x + 3)2 +2

15. Find the zeros of the following quadratic functions.

(a) f: + 7x + 12 (c) g: x x2 + 2x - 3

(b) h: x - 2x + 3 (d) k: x 4x2 - 12x + 9

16. Solve the following quadratic equations.

(a) x2 - 7 = 0 (c) x2 + 7 = 0 (e) 2x2 - 7x = 15

(b) x2 + 2x - 2 = 0 (d) 3x2 - x = 0 (f) 2x2 - 3x - 4 = 0

17. Sketch a graph of the following function:

U: - 7)(x - 2)(x + 5) for every x E R.

Also, explain why this is a polynomial function.

18. Sketch the graph of the following real rational functions.

In each case, identify the domain of the function.

(a) r:
1
x

1
(b) s: X --II

14.1

(e) t: x.. +3.

(d) f: X 2

x 2



CHAPTER 8

CIRCULAR FUNCTIONS

There are many physical phenomena which are periodic in

nature; during some specified time interval they exhibit some

behavior which they then "repeat" during subsequent time inter-

vals(i.e., periodically). Think, for instance, of a pendulum

which moves back and forth during a certain time period, then

retraces its path time and time again. Other examples of

periodic phenomena are: a cork floating in choppy water, a point

on a vibrating violin string, a point on the tip of a vibrating

tuning fork, and a particle of air during passage of a simple

sound wave. Even the beat of the human heart is periodic.

Still another physical expression of periodicity is to be

found in the study of electricity. For instance, the formula

I = a(sin wt)

where a and w are constants, and t is a measure of time, may be

used to find the quantity of electric current, I. But what does

"sin" represent? It is an abbreviation for the sine function,

part of whose graph appears as Figure 8.1.

Graph of y:x---sin x

Figure 8.1
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Do you see that this graph suggests periodicity? None of the

functions studied so far have graphs with this charactePistic.

Therefore, in order to study periodic phenomena, new

functions -- called the circular, or trigonometric functions --

are needed. The sine function is just one of these.

In this chapter we introduce two of the circular functions.

In Course IV we will begin the study of periodicity.

8.1 Sensed Angles

BA and BC, in Figure 8.2 are two rays having the same

endpoint. The ordered pair of rays (BA,BC) is a sensed angle,

in particular sensed angle ABC. (Compare this with the defini-

tion of "angle" in Course I.) The same two rays

A

Figure 8.2

determine another sensed angle -- sensed angle CBA, which is

the ordered pair of rays (BC,T31).

( s Ed') (MIA)
sensed angle ABC p sensed angle CBA.

Definition 1. A sensed angle is an ordered pair of rays

having the same endpoint. The ordered pair
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aso is denoted LABC.

Notice that the definition of sensed angle does not demand that

the rays of the pair of rays be non-collinear or even distinct.

(See Exercises 9 and 11 of Section 8.2).

In a sensed angle, the first ray of the ordered pair is

called the initial side of the angle, the second ray the terminal

side.

Example 1. (RS,RT) is a sensed angle. Its initial side

is RS. Its terminal side is RT.

In Figure 8.3, is there a direct isometry that maps the

initial side or 5DE onto the initial side of LABC, and the

terminal side of LFDE onto the terminal side of LABC?

(In Course II it is implicit that a transformation is a

direct isometry if it is the composition of an even number of

line reflections; it is an opposite isometry if it is the

composition of an odd number.)

E1

Figure 8,3

The answer -- perhaps surprising -- is "no." If you try to map

'ODE onto ABC, you might first map D onto B by the reflection

R1 in L1, the perpendicular bisector of DB (Figure 8.4.) We

suppose A, C, E, F, are so chosen that BA = BC = DF = DE. R1

maps F onto F' and E onto E'.
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94 I

I R tE"

4-

fo
F I F"

,

4
Figure 8.4

C

Our second mapping is the reflection R2 in A, the perpendicular

bisector of AF'. R2 maps E onto B (why?), F' onto A, and E' onto

E". The composite mapping R2R1 is a direct isometry, and it maps

DF onto BA. But R1R1 does not map DE onto BC. To map both DF

onto FA and DE onto BC requires a third reflection R2, in the

perpendicular bisector of mr. Then R3R2R1 will map LFDE onto

EABC. But 112112111 is not a direct isometrY, since it is the

composition of an odd number of line reflections.

Our interest in this chapter will be with sensed angles

that can be mapped onto each other by direct isometries.

Definition 2. LRST is congruent to /IBC written LRST s TABC

if and only if there is a direct isometry f

such that f(SR) = BA and f(ST) = BC.

In other words, in order for two sensed angles to be congruent,

there must be a direct isometry of the plane that maps initial

side onto initial side and terminal side onto terminal side.

Note that congruence is being used in a different (extended)

way now. That is, congruence Of sensed angles is not the same

as congruence of ordinary (unsensed) angles.
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In Figure 8 b5 (YW,ii) a (0,KG). There is a

translation T such that T(YW) = KM, and T(YX)

= KG. And a translation is a direct isometry.

Notice however that (YX,YW) (KM,K6).

8.2 Exercises

1. Name the initial side and the terminal side of the following

sensed angles.

(a) aRN (b) roXR (c) ELT (d) 5EA.

2. Using the figure below, which of the following statements

appear to be true?

(a) (0,gP) a (OA)

(b) (gB,gP) a (RA)

(c) L a ; GEED

(d) lia g LpEF

3

(a) Describe an isometry f such that f(BA) = 8, and

f(BC) =

(b) asc a LDEF?

(c) Describe an isometry g such that g(55) = BA, and

g(EP) = BC.
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(d) Is ZBEF a aBC?

(e) Is congruence of sensed angles a symmetric relation?

(Can you think of counterexamples?)

4. If Ont,FT) a ( BA,O) is a '.rue statement, write two other

related statements which must be true.

5.

6.

G

(a) Describe an isometry f such that f(GK) = GK, and

f(an) = GH.

(b) Is aGH a LKGH?

(c) Is alGK = LHGK?

(d) Is congruence of sensed angles a reflexive relation?

(e) Is ZR4K MEI

fr

H4
-1r"

(a) Describe an isometry f such that f(BA) = 5, and

f(BC) = EP.

(b) Is LABC LDEF9

(c) Describe an isometry g such that g(g) = andand

g(0) -= RR.

(d) Is (UP a LGHK?

(e) Describe an isometry h such that h(BA) = HG, and

h(BC) = R.
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(f) Is LABC = LGHK?

(g) Is congruence of sensed angles a transitive relation?

7. Is congruence of sensed angles an equivalence relation?

(See Exercises 3, 5, and 6 above.)
S

8.

(a) Describe an isometry f such that f(SR) = ML and

f(§4) = MP.

(Hint: Consider a translation followed by a rotation.)

(b) Is LRSQ .1 amp?

(c) Is LRSQ a EPML?

9. Since the definition of sensed angles does not demand non-

collinearity of rays, we have for instance (0A,OB) as a

sensed angle, where A, 0, and B are collinear points with

0 between A and B. Such an angle is called a straight angle.

10.

B 0 A

(a) Is (a,a) a (AUL)?

(b) If your answer is "no," tell why not. If your answer

is "yes," describe a direct isometry f such that

f(a) = db, and f(OB) = OA.
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(a) Is ZPDG = LRBN? (If so, describe the direct isometry.)

(b) Is ZPDG = LNBR? (If so, describe the direct isometry.)

11. Since the definition of congruent sensed angles does not

demand distinctness of rays, the ordered pair (0A,0A) is

a sensed angle. Such a sensed angle is called a zero angle.

(Recall that an ordered pair of numbers (x,y) permits x

and y to be the same number; for instance, (2,2) is a per-

fectly good ordered pair of numbers. So with an ordered

pair of rays we allow the rays of the pair to be the same

ray.)

0 )

(a) Is (5,0B) a (AR,Ai)? (If so, describe the isometry.)

(b) Is (5,0B) a (XY,XY), where XY is any other ray in

the plane?

12. With ruler and compass, carry out the construction of

Figure 8.4.

8.3 Standard Position

The rays of a sensed angle will usually be considered as

subsets of the coordinate plane. A sensed angle such as (0A,OB)

in Figure 8 .6 is said to be in standArd position.

Figure

Y

Definition 3. A sensed angle AOB is in standard position

swrarmliriarAmrrorwirim
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if and only if FA is the positive x-axis.

Notice from the definition that it is the initial side of the

angle which is the positive x-axis.

Example 1. In Figure 8.7 the sensed angles NOR and AOB

are in standard position. The sensed angles

RON and BOA are not in standard position.

Ay

t
0 N B 0

Figure 8.7

X
7

A

Example 2. Figure 8.8 shows ZWOB in standard position,

together with the circle x2 + y2 = r2, with

center at the origin and radius r. The

"darkened piece of the circle" in the figure

represents an arc of the circle. In particular,

it is the arc intercepted by the rays of the

sensed angle. Physically, this arc might be

thought of as the "path" covered in moving

counterclockwise around the circle from the

initial side of the sensed angle to the terminal

side.
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Since the circumference of the circle is

271.r,

the arc in this case has a length which is

of 2irr, or

ir.

This number, the arc length, is denoted by the

symbol "O." We assume that every arc of a circle

has a unique length.

In Figure 8.9 we have LFOD in standard position, and two

circles:

x2 + y2 = r12

x2 + y2 = r22 (rt < r2

Figure 8.9

The circumference of the larger circle is 271-r2, and the circum-

ference of the smaller circle is 2rr1.

glga. = 271. EA - EA
affi Fr' r1 r1

In other words, the ratio of the circumferences is the same as

the ratio of the radii. (If, for instance, the radius of one

circle is twice that of another circle, then L.ts circumference
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is twice as great also.) This same equality of ratios holds

also for arcs of the circles intercepted by the same standard

position angle. Thus in Figure 8.9:

ga = r_a
rt

If we want the ratio of arc length to radius, we can write:

_a =_1
r2 ri (why?)

This suggests the following definition.

Definition 4. If AOB is a sensed angle in standard position

and it intercepts an arc of length 9 (measured

counterclockwise from the initial side) on

a circle x3 + y3 =

then we call i the radian measure of the

sensed angle.

Stated informally, to find the radian measure of a standard

position angle, divide the length of the arc it intercepts

by the radius of the circle. Since this ratio will be the

same no matter what circle is used, we shall most often use

the unit circle

x3 + yo = 1.

This is a convenient choice since, for the unit circle,

9 4

-1 = 9. Therefore, the arc length itself is the radian

measure of the angle.

Example 3. 50B, in standard position, intercepts an arc

1
which is 8. of the circle. (See Figure 8 .10. )

The circumference of the unit circle is

2r(1) = 2r.
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1
11. of r2 is .

Therefore, the radian measure of (0A,OB) is

x2 4. y2= 1

Figure 6.10

The definition of radian measure of a standard position

sensed angle sets up a function

m : SPSA [00 2r) ,

where SPSA is the set of sensed angles in standard position.

Note that the range of m is (x : 0 Kx < 270, Using function

notation in Example 3, nal(LA0B) = " says that the radian

measure of LAOB is

Example 4. In Figure 8.11 (a) LTSR is not in standard

position. However, inri abB of Figure 8.11(b).

inLAOB = x 2r =

Therefore, we say that LTSR also has a radian

measure

(a) T

sa

Figure 8.11
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Example 4 serves to illustrate

Definition 5. Any sensed angle congruent to LAOB, where

LAOB is in standard position, is assigned

the same radian measure as LAOB.

8.4 Exercises

1. The accompanying diagram shows a standard position LAUB

1
which intercepts E of three different circles. The circles

have radii of 1, 2, and 3. For each of the three circles

compute A and ;1-where A is the length of the intercepted

arc, and r is the radius of the circle.

2. In each of the following diagrams, estimate as closely as

possible the radian measure of the standard position

sensed angle shown.

(a) (b) (a)
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( f )

(Hint: Assume the circles are unit circles, and estimate

the fraction of the circle which is intercepted by

the sensed angle.)

3. Draw a unit circle.

positive x-axis and:

Then draw rays so that a is the

(a) mitiOB = qr (b) mil0C =

(c) ma0D = (d) mrA0E = r

(e) m7ROF = (f) ma0G =

(g) = qr

4. Draw a unit circle. Then draw rays so that OA is the

positive x-axis and:

(a) mEAOB = qr (b) ma0C = iv

(c) ma0D = 3.9r (d) ma0E = '67-fr

(e) maw =r (f) maoG = 144/-

(g) mace = ;Tr

5. Recall from Section 8.1 that the ordered pair of rays

(0A,6A) is considered to be a sensed angle.

1

A

What is the radian measure of (61,a)? Since we may
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consider this angle to intercept anarc of zero length, we

say that the radian measure is 0.

What is the radian measure of (RS,RS), where RS is any ray

in the plane? Why?

6. The function m assigns to each standard position sensed angle

exactly one number as its radian measure.

(a) Are negative numbers used as assignments?

(b) Is 0 used as an assignment? (See Exercise 5 above.)

(c) Explain why 2r is not used as an assignment.

(d) Are numbers greater than 2r used as assignments?

(e) What is the range of the function m?

7. If the domain of the function m is taken as the set of

sensed angles in standard position, is m a one-to-one

function? Is any such sensed angle assigned more than

one number? Is any number assigned to more than one such

sensed angle?

8. The function m : SPSA [0, 2r) is one-to-one and

onto. Hence there is an inverse function

-1m : [0, 27r) ---OSPSA.

Draw a unit circle. Then draw appropriate angles for

each of the following:

(a) m-l+r) Call it MB.

(b) m-1(i171.)

(c) m-1(i r)

(d) m 100

(e) m-1(0)

Call it Mc.

Call it LAOD.

Call it 57E.

Call it by some appropriate name.
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Call it EAU, estimating as closely

as possible.

Call it DWG.

9. Using the diagram at the right,

complete the following. Notice

that the sensed angles are not

in standard position, but each

will have the same measure as a

standard position sensed angle

to which it is congruent.

(a) OMR =

(b) miAOT =

(c) mi.ROP =

(d) m/ION =

(e) mabil =

mipX =

(g) mabP =

Be careful; The answer to (a), for example is not

8.5 Circular Functions of Angles

Certain important mathematical functions are called circular

functions; they may be defined by use of the unit circle x' + ya = 1.
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Figure 8,12

Definition 6. Let LOB be a sensed angle in standard

position. Then S and C are two functions

such that S(L PLOB) = Y$ and

C(ZMB) = x,

where (x, y) is the point of intersection

of the unit circle and the terminal side of

LOB, (See Figure 8,12,) The function S is

called the SINE function, and the function

C is the COSINE function, The domain of the

SINE function and the COSINE function is the

set of all sensed angles in standard position.

It is important also to consider the range

of each of these functions, (See Exercises

3 and 4 in Section 8.6.)
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Example 1. In Figure 8.13

S(NOB) = 1, or SINE OW = 1.

c(2al) = o, or COSINE (EOB)

Figure 8.13

Example, 2, In Figure 8.14 (2 , 0 is a point on the

unit circle. (Why?) Thus:

SINE (g0B) =

COSINE (10B) = 1.4'3

Figure 8614

Certain pairs of sensed angles are said to have the same

sense, while other pairs are said to have opposite sense. We

shall not attempt a precise definition of these concepts but

shall consider a helpful physical interpretation of them. Look at

these angles.
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ABC and LIEF have the same sense. If one thinks of moving in

a path from A to B to C, the path may be described as counter-

clockwise; similarly, moving from D to E to F is a counter-

clockwise path. On the other hand, ABC and [HK have opposite

sense. Whereas the path from A to B to C is counterclockwise,

the path from 0 to H to K is clockwise.

There is an important relation between the SINES of stan-

dard position angles and their senses. To illustrate this, look

at Figure 8.15. AOB and AOC have the same sense, Also LIOD

and /ICE have the same sense. In fact, any two standard position

Figure 8.15

sensed angles have the same sense if and only if their terminal

sides lie in the same half-plane determined by the x-axis. On

the other hand, 10B and /OD have opposite senses. Any two

standard position sensed angles have opposite senses if and only

if their terminal sides lie in opposite half-planes determined

by the x-axis, Congruent sensed angles (whether or not in stan-

dard position) have the same sense.

Speaking informally, then, we can say that two standard

position sensed angles have the'same sense if their terminal

sides are both "above the x-axis" or both "below the x-axis,"
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However in the first case, the SINES are both positive; la the

second, the SINES are both negative. Thus we make the following

statement:

Two sensed angles in standard position have
the same sense if and only if their SINES are
both positive, or their SINES are both negative.

The relation between congruence of unsensed angles and

congruence of sensed angles can now be stated: /BBC g AEF iff

ABC g Z EF, and /13C and ZItEF have the same sense.

8.6 Exercises

1. Using each of the diagrams below, find SINE(LAOB), and

COSINE(LAOB).

(a) (b) (c)

2.

A

Remember that (OA,OA) is a sensed angle in standard position.

(a) What is SINE((O1,6i))?

(b) What is COSINE((OA,OA))?

3. (a) Explain why the SINE function can never assign a

number greater than 1 to a sensed angle. (Hint: remem-

161
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ber how the SINE function is defined in terms of the

unit circle.)

(b) Explain why the SINE function can never assign a

number less than -1 to a sensed angle.

(c) Assuming that the SINE function assigns every real

number between -1 and 1 to some sensed angle, what is

the range of the SINE function?

(d) Is SINE : SPSA ---+ (-1, 1] a one-to-one function?

4. (a) What is the range of the COSINE function?

(b) Is COSINE : SPSA (-1, 1] a one-to-one function?

5. Prove that for every 7XOB in standard position:

[SINE(210B)13 + [COSINE(a0B)]2 = 1

(Hint: Use the unit circle.)

6. For each of the following standard position sensed angles,

tell whether the SINE function assigns a positive number,

zero, or a negative number.

(a) (b)

7. Answer the same questions for the COSINE function.

8. Draw all sensed angles in standard position to which

(a) the SINE function assigns the number 0.

(b) the SINE function assigns the number 1.

9. Draw all sensed angles in standard position to which

(a) the COSINE function assigns the number 0.

(b) the COSINE function assigns the number 1.

162
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10. Is there a LAOB such that SINE(a0B) = COSINE(a0B)?

How many are there?

* 11. What number does the SINE function assign to each of the

angles in Exercise 10? (Hint: Use Exercise 5 above.)

12. Draw all sensed angles in standard position such that

COSINE(a0B) = -SINE(a0B).

13. Show that (Won) is a point on the unit circle, by using

the equation of the unit circle.

14.

(2 44-3)
SINE(LAOB) =

COSINE( LAOB) =

(a) Draw ZIOC (different from LAOB) such that

SINE(ZROC) _3.

(Hint: Use a reflection in the y-axis.)

(b) Draw DIOD (different from 2.10B) such that

COSINE(210E) = 2.

(Hint: Use a line reflection.)

(c) Draw 5.0E such that SINE(510E) = - 10, and

COSINE(LAOE) = -

15. If (a,b) is the point so labelled on the unit circle,

what are the coordinates of the other points shown?

103
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16. Draw a picture showing that two standard position angles

do not necessarily have the same sense if their COSINES

are both positive or both negative.

8,7 Circular Functions of Real Numbers

The mapping m assigns a real number Os 0 S 9 < 2r, to

every sensed angle in standard position. Thus the domain of

m is the set SPSA (standard position sensed angles), and the

range is the set (0 : 0 A < 210, as indicated below:

SPSA (0 : 0 0 < 210,

Since this mapping is one-to-one and onto, there is an inverse

mapping m-1, represented by

-1
(9 : 0 S 0 < 2111 SPSA

Note that the range of m-1 is SPSA; and we have previously de-

fined a mapping

SPSA
SINE

(x :

whose domain is SPSA. Therefore these two functions may be

composed as shown below resulting in a new (composite) function.
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(0 : 0 S 9 < 2r
m-

SINE
) --------)0SPSA ---------p. (x : -1 S x 1)

SINE
m-1

The domain of this composite function is (9 : 0 9 < 2r), and

the range is (x : -1 Kx K1). This function is called the sine

(abbreviated "sin") function, to distinguish it from the SINE

function, whose domain is SPSA. Thus while the SINE function

assigns a real number to each standard position sensed angle,

the sine function assigns a real number to every real number

between 0 and 27 (not including 27). The sine function is

formally defined as follows.

Definition 7. The function

sine: (9: 0 < (x : -1 Kx < 1)

is defined by

sine e = SINE (A0D),

where GOOD is the unique standard position

sensed angle with radian measure 0.

Example 1, Suppose LAOS is a standard position sensed

angle such that

m(LAT)13) =

Figure 8.16 165



- 162 -

Then m
-1(2) = A013.

SINE(a0B) = 1

(SINE ° m-1)(7/2-.) = sine(2) = 1

(See Figure 8.17.)

m-1 SINE

sine
Figure 8.17

Example 2, (2, -r) is a point on the unit circle.

Figure 8,18

m(2OB) =

in-1(1) = Am)

snrE(c2oB) =

Therefore sine

That is, sine (f) = SINE(m1(f) )
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A cosine function is defined in a way comparable to that in

which the sine function was defined,

Definition 8. The function

cosine: (e : 0 e <2r) (x : x 1)

is defined by

cosine 0 = COSINECAOD),

where ZtOD is the unique standard position

sensed angle whose radian measure is A.

(0 : o S e < 270
m-1 CMINE

SPSA (x : x 1)

cosine

Example, 3, Suppose AB is a standard position sensed

angle such that

m(IA0E)

Figure 8.19

Then m-1(1) = LIOB.

COS( A0B) = 0

Therefore cos 0.
2
=

That is, cos 2 = COSINE(m-1(E) ).

(See Figure 8,20,)
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COSINE

cosine

Figure 8.20

Although the domain of the SINE and COSINE functions has b

been specifed as the set of sensed angles in standard position,

we do not want to restrict ourselves to speaking of the SINE

and COSINE of only those angles which are in standard position.

Acco:lingly:

Definition 9. Let LAST be a sensed angle.

Th3ISIN(%RST) = SINVIOB)

and COS(LRST) = COS(210B)

if and only if

LRST a ZIOB, and TIOB is in standard position.

Example 4. In Figure 8.21 MB is

in standard position.

SIN(ZIOB) = 1.

LCOD m LLB. So

SIN(LCOD) = 1.

On the other hand,

SIN(LDOC) = SIN(LBOA) = SIN(%OE) = -1,

5:0E being a standard position angle.

8.8 Exercises

1. Show that (-0, i) is a point on the unit circle.

Figure 8.21
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2. Using the diagram, complete statements (a) (f).

(a) m(ZIOB) =

(b) ni-1(gir)

(c) siNE( goB) ,

(d) sine =

(e) COSINE(l0B) =

(f) cosine '7Tr =

3. Show that (P?, T2) is a point on the unit circle.

4, Using the diagram, complete statement (a) - (h).

(a) m(/j0B) =

(b) m71(ir) =

(c) SIN(210B) =

(a) siN(m.-1(4.7 )) =

(e) sin Tr =

(f) COS(A0B) =

(g) COS(m.4( ir) ) =

(h) cosir =

5. Use the diagram to complete

(a) [SIN ° m-147) =

(b) [COS ° m11(3 r) =

6. Complete the following:

(a) sin; =

(c) sin r =

(e) cos =

(g) cos r

1.69

statements (a) and (b).

(b) sin =

(d) sin 0=

(f) cos ,r =

(h) cos 0 =
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7. For each of the following diagrams, decide whic'l of the

following statements are true:

sin A < 0; sin e = 0; sin A > 0

cos 0 < 0; cos A = 0; cos 0 > 0.

(a) (b)

8. In the diagram m(LA0B) = el, m(LA00) = m(LX0D) =e3,

m(LABE) = e4 . -Which of the following are true? Which are fats(

sin Al = sin 02

sin Al = sin 03

(b)

170 (d)

cos Al = COS A2

cos Al = cos e3
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(e) sin .91 = sin 94 (f) cos Al = cos 84

(g) sin 91 = - sin 9a (h) sin PI =- sin 93

(i) sin 91 = - sin 94 (j) cos el = - cos 92

(k) cos 01 = - cos es (1) cos 01 = - cos 94

9. Given that LAOB, in the diagram, intercepts an arc which is

1/6 of the circle, complete statements (a) -- (f).

(a) m(LOB) =

(b) m-1( ) iXOB

(c) SINE(X0B) =

(d) siNECm-105-9.

(e) sin 3.

(f) cos

10. Given that LAM in the diagram, intercepts an arc which is

3/8 of the unit circle, complete statements (a) -- (f).

(a) m(A0B) = 1 1 ,t,
(b) m-1( ) = ZIOB Ag5,,,,.

(c) SIN(A0B) =

(d) snr(m."1(37r)) =
1111"

(e) sin k. =

(f) cosy =
11. (a) What is the domain of the SINE function?

(b) Is the SINE function one-to-one?

(c) What is the domain of the sine function?

(d) Is the sine function one-to-one?

(e) What is the domain of the COSINE function?

(f) Is the COSINE function one-to-one?

(g) What is the domain of the cosine function?

(h) Is the cosine function one-to-one?
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8.9 Degree Measure, Radian Measure and An le Addition

The protractor was used in Course I as an instrument for

measuring unsensed angles. Such an instrument is based on the

assumption that each unsensed angle is assigned a unique number

called its degree measure. Thus, in Figure 8.22, LABC has a

measure of 30° (read 30 degrees.)

150

180

90

120 60

45

B

Figure 8.22

Degrees are also used to measure sensed angles. In Figure

8.23, LIOB is in standard position. It intercepts an arc of

length ion the unit circle. And so m(LA5B) = that is, the

radian measure of the sensed'angle is However, LAOB is a

Figure 8.23
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right angle, which has a degree measure of 90. Since 71013 is

in standard position, we assign 90 as the degree measure of ZIOB

(but not of ii0A); and

radians = 90°

is a short way of stating that a sensed angle with degree measure

90 is assigned the number if radian measure is used. Similarly,

r radians = 180°,

and this equality is the basis for changing from one unit of

angle measurement to the other, as are the following:

r radians = 1800 r radians = 180°

11r$0 )o
1 radian =

(
-(3777 radians = 1°

Example 1. If a sensed angle has degree measure 105,

what is its radian measure?

180° = r radians

1° - nu radians

105° = (105 x Ig75) radians

= if.-er radians

Example 2. If t(iA0B) = 5, what is the degree measure of AM?

,r radians = 180°

5 radians = (180o57)

= 36°

Example 3. Given sin,i; = 1. Then since radians = 90°,
L.

it follows that sin 90° = 1.

Notice that the domain of the sine function is .(x : 0 S x ( 2r) ,

We will, when convenient, replace radian measure by equivalent

degree measure and write sin = sin 90°, sin IL = sin 60°, etc.

If m(LA0B) = 27r, what is its degree measure? Figure 8.24

suggests a simple way of extending the protractor in order to
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3find the degree measure of any sensed angle. Thus, radians =

270°.

Figu a 8.24

Note that if a sensed angle in standard position has its

terminal side in the first quadrant, the angle has degree measure

between 0 and 90; if in the second quadrant, between 90 and 180;

if in the third' quadrant, between 180 and 270; and if in the

fourth quadrant, between 270 and 360.

Example 4. What is the radian measure of a sensed angle

whose degree measure is 330?

1 degree = miu7 radians

330° = (330 x ) radians

11= -6.arr radians.

1'74
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We turn now to some principles which will be useful in later

work. In Figure 8.25, ZXOB is a sensed angle intercepting an

arc of length 0 on the unit circle; thus, m(iX0B) = 9 (radians.)

Figure 8.25

0131 is the reflection of tA0B in the x-axis. It seems reason-

able to assume that GA*M also intercepts an arc of length o -

that is, to assume that isometries (a line reflection in this

case) preserve arc lengths just as they preserve lengths of seg

ments. And since the circumference of the circle is 2r1 this
up

means that the arc associated with LA0B, has length 2r - o; that

4
is, m(LAOW) = 2r - 9. This illustration suggests the general

principle stated below.

If LAOB is a standard position sensed angle with m(LA0B) = o,

up
and LAOBI is the reflection of LAOS in the x-axis,

then m(GABI) = 2r 9.

Of course the principle is applicable also when degree measure

is used, the degree measure of the reflected angle then being

360 - O.

175
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Example 5, Suppose AOB is a standard position sensed

angle with degree measure 225.

Figure 8.26

Let amil be the reflection of TIOB in the

x-axis. Then the degree measure of GOB'

is 360 - 225, or 135,

A second principle is closely related to the one above.

Thus, in Figure 8.27, LIOBlis the image of /2013 under reflection

in the x-axis

Figure 8.27

If m(iI0B) = e, then m(AOH,) = 27r. - Ps by the earlier principle.

However, A0A g LOB', since there is a direct isometry (rotation)

mapping initial side onto initial side and terminal side onto

terminal side. Therefore, since congruent sensed angles are

176
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assigned the same measure, mrit0A) = 2r - el, whereas m(A0B) = n.

In other words, if a is the measure of a sensed angle, then

2r - p is the measure of the angle obtained by "interchanging"

the initial and terminal sides.

If ilOB is a sensed angle, and m(2j0B) = ol

then m(/011)= 2r - n.

The principle applies equally well in case degree measure is

used, with 360 replacing 2r.

Example, 6. Suppose itOR -- that is, the ordered pair

(61001) -- has a degree measure of 120.

Figure 8.28

Then 710A -- the ordered pair ( 0 ,51) has

degree measure 240.

Finally in this section we introduce the concept of angle

addition. By angle addition is meant a binary operation on the

set of sensed angles. Thus we must have a way of assigning a

unique sensed angle to every ordered pair of sensed angles. Thus

let JAC and LDEF be two sensed angles, (See Figure 8.29(a)). Then

177
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Figure 8.29

we shall assume the existence of a unique ray such that

"AG E NF. (See Figure 8,29(b)). gga -- the ordered pair

(E, BB -- is defined to be the sum /ABC + AEF,

Definition 10. If .LIBC and LtEF are two sensed angles,

and /14BG elEF, then /ABC + 6EF= /AA

8.10 Exercises

In Exercises 1 -- 21, angle measurements are listed. If

the measurement is in radians, write the equivalent degree mea-

surement; if the given measurement is in degrees, write the

equivalent radian measurement,

1. 0

2, 30°

3, 45°

4. 60°

5. 90°

6. w radians

2
7 radians7. 1-

8, zr radians

Tyr9. Tr radians

10. 315
o

11, 330° 21, d degrees

12. 300°

13, 270°

14. ir radians

15,
3
--r radians

16. kr radians

17. 15
o

18. 2 radians

2°

20, r radians
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22. In the accompanying figure,

Bt and C' are reflections of

B and C, respectively, in the

x-axis. If m(L0B) = 55°, and

m(10C) = 200°, determine the

degree measurement of the followin

LLB,

atOCI

ZgOA

LOA

ilt0A

L8' OA

23. -Copy the sensed angles represented

at the right. Then draw

(a) the angle which is the

sum 2:AST + ZtIT

(b) the angle which is the

sum + gST.

T

S
)b

24, What is the sum gOB + 10B if 10B is in standard position

and OMB contains:

(a) the positive x-axis

(b) the positive y-axis

(c) the negative x-axis

(d) the negative y-axis

25. If iXOB is any sensed angle, what is 110B + zero angle?

zero angle + 10B?

26. If ZgOB is any sensed angle, what is + EgOA?

T79
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8.11 Some Special Angles

The SINE and COSINE of certain angles -- called "special

angles" in the title of this section -- arise frequently enough

in applications of the circular functions to merit attention.

Furthermore, determining the SINE and COSINE of these angles

emphasizes some interesting relationships among the circular

functions and some geometric principles studied earlier.

Consider first a right triangle such as that illustrated

in Figure 8.30(a), with an acute angle measuring 60°, and a

hypotenuse of unit length (i.e., length one). Reflect in line

V% (See Figure 8,30(b).) Then:

A

(1) B, C, and Blare collinear, since BC _LAC, and each of

two perpendicular lines is its own image under

reflection in the other. Thus ABB' is a triangle,

with point C contained in side BB'.

(2) LB' has a degree measurement of 60°, since isometries

of preserve angle measure.

(3) We now know triangle ABB' is equiangular. (Why?)

Therefore it is equilateral, and BB' = 1. But

BC = CBI, since isometries preserve distance, and

so BC =
1

180
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(Li-) Using the Pythagorean principle in right triangle ABC,

(AC)2 = 12 - (P2 = 1 - = Therefore, AC = 2 0 .

So, in any right triangle having unit hypotenuse and a 60°

angle, the leg "opposite the 60° angle" measures 2N13 , and the
1 , -fpother leg measures E . Thus, in Figure 8.31(a) LAOB is in

standard position, and has a degree measure of 60. Since

BC =
2 3 and OC =

2 '
the coordinates of B are V3)

And we have
sin 60° =

2

cos 60° =

Figure 8.31a

BIB

(
)

(, -4i3)

A"

FigureFigure 8.31c

181

8 43)

(,, +r3)
Figure 8.31b

8"( II FA

( -iv 8" B

Figure 8.31d
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Reflecting in the x-axis (see Figure 8.31(b)), tho image

of B is B4, - . The degree measure of ZkOB' is 360 -

60 = 300°. Consequently,

sin 300° -

cos 300° =
1

Now reflecting in the origin, the image of B' is

B"(- 2, isn) . (See Figure 8.31(c)). Also the image of A is
ao

A'', LA"OB" has degree measure 300
o

since it is the image of

ZtOB'. Therefore LB110A" has degree measure 360 - 300 = 60°.

And since LOB" + EB"OA" LatA" which has degree measure

180, LA0B1' has degree measure 120. Thus,

sin 120° = -11.N3

cos 120
o

-
1

Finally, reflecting in the x-axis again, the image of B"

is B",(-i, - i473) . (See Figure 8.31(d).) Since LOB"

has a degree measure of'120°, the degree measure of LA0B"' is

360 - 120 = 240°, Therefore,

sin 240° = - lAr3
2

cos 2400 =

The results above are summarized in the table below:

sin

cos

60° 120
o 240° 300°

3....r.,r13 g_..r,r,- 3. J-.4
2 "" '''

_l_r,
2-

r
- .§-

3.-
E

i
2

I

182
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Figure 8.32

In Figure 8.32, LAOB is a standard position sensed angle

with a dgree measure of 30. Since BOC is a right triangle with

hypotenuse of length one, and LOBC is a 60° angle, we know

OC = 1,0
' 2

2-*

'2
1 )and BC = Thus the coordinates of B are (10

2 '

and we have:

sin 30° = 1 cos 30° =
2 2

By reflecting in the x-axis, then in the origin, then again in

the x-axis, the sine and cosine of 330°, 150°, and 210° may

be determined, This is left for the exercises. (See Exercise

1 of Section 8.12.)

Consider next an isosceles 'right triangle whobe-hypotenxise

in Figure 8.33, with hypotenuse of unit length. Let a denote

the length of each of the two legs of the triangle. Then,

by the Pythagorean prinCiple,

a2 + a2 = 12

2a* = 1
_r
21

l
or a = -va* F 2=

Figure 8.33.In effect, in any isosceles right triangle whose hypotenuse is

assigned length one, each of the two legs measures .

iN/-2)

Figure 8.34
A!, 11y")

;
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In Figure 8.34, LAOB is a standard position sensed angle

with degree measure 45°. Thus, ABC is an isoceles right tri-

angle whose hypotenuse measures one. By the work above, we

T2know OC = BC =
1 a ; as a result, the coordinates of B are

(i47, 2 ivsg?) Therefore,

sin 45° =

cos 45° =

Piom these values, the sine and cosine of 315°, 135°, and

225° can be determined by reflecting in the x-axis, then re-

flecting in the origin, then reflecting again in the x-axis.

Exercise 2 of Section 8,12 is concerned with this.

8.12 Exercises

1, In Section 8.11 it was established that

1 1 m,
sin 30

o E and cos 30
o

By reflecting in the x-axis, then in the origin,-then in

the x-axis, determine the following:

(a) sin 330° (d) cos 150°

(b) cos 330° (e) sin 210°

(c) sin 150° (f) cos 210°

2. Also in Section 8.11, it was demonstrated that

sin 45° = ihNiP and cos 45° = 2

Use these values to determine the following:

(a) sin 315°' (d) cos 135°

(b) cos 315° (e) sin 225°

c sin 135° (f) cos 225°
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3. Copy and complete the following table:

o°

30°

45°

60°
900

120
o

135°

150°

180°

210°

225°

240°

270°

300°

315°

330°

sine cosine

4. Complete the following:

(a) sin =

(b) cos =

3
(c) sin zrr =

(d) cos 7r =

(e) sin

(f) cos ir =

(g) sin ir = (m)

(h) cos 4 = (n)

(i) sin g7= (0)

(j) cos ir = (P)

(k) sin -6
114 =

(1) cos kr =

185

sin 17=

2cos Tr =

sin
4
--r
3

cos
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5. For each of the following, give all values of 9 (in degrees)

which make the equation true.

(a) sin 9 = (b) sin 9 =-1-

(c) sin 9 = cos 0 (d) cos 9 = - sin 9

6. For each of the following, give all real numbers (which may

be interpreted as radian measures of angles) which make

the equation true.

(a) sin 0 = 0

(c) sin 9 = 4/-2

Complete the following:

(a) sin 30° =

(b) cos 30° =

(c) (sin 30°)2 + (cos 300)9 =

(d) sin 45° .

(e) cos 45°

(f) (sin 450)2 + (cos 45°)a =

(g) sin iv =

(h) cos iv =

(i) (sin ;r)* + (cos q)2

(b) cos 9 = i-

(d) (sin 9)(cos e) = 0

8. Prove the following:

(sin + (cos = 1,

where 9 is the measure of a sensed angle (in either degrees
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or radians.) Refer to the definition of the sine and

cosine functions; see also Exercise 5 of Section8 .6.

(Note: (sin On is written sinn0 and (cos On is written

cos
n
4. In this notation the above equality is:

sins e + cos2 A = 1.)

9, Complete the following:

(a) sin 60° =

(b) sin 30° =

(c) True or false: sin 60° = 2 sin 30°

(d) sin 90° =

(e) sin 45°

(f) sin 150°

(g) True or false: sin 150° = sin 90° + sin 60°

10. Find a rational approximation of 412, correct to three

decimal places.

Then give a rational approximation for sin 45° and cos 45°,

correct to three decimal places.

1j.. Find a rational approximation of /3, correct to three

decimal places.

Then give; a rational approximation for cos 30° and sin 60°,

correct to three decimal places.

187
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12. Complete the following table, giving sine and cosine

assignments correct to three decimal places.

Degree Measure
of Angle

Radian Measure
(9) of Angle

sin 9 cos 9

0°

30°

45°

60°

90°

120°

135°

150°

180°

210°

225°

240°

270°

300°

315°

33 0°

188
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8,13 Graphs of Circular Functions

Graphs are often important in the study of circular functions,

just as in the case of polynomial and rational functions in

Chapter 7. Let s be the function with rule s(x) = sin x,

0 S x < 2T. (In earlier sections, "sin e" has been used. However

one variable is as good as another; and so, to be consistent with

earlier graphs in the coordinate plane, the variable "x" is used.)

Table 8.1 lists some of the values used to plot some points of

this graph in Figure 8,35.

x 0
I
6.Tr

I
nr

1
yrr

Ier 2
7qr

3wr 5
6qr Ir .

sin x 0 .50 .71 .87 1.00 .87 .71 .50

x
7
brir

5

gqr

4
3qr

3

er
5
341.

7
41r

11
Vir

sin x -.50 -.71 -.87 -1.0 -.87 1-.71 -.50

. Table 84

tir ifr fr :Tr 'Lir

1.11 I 1 I 1 111
Jet 3 at FT ff

Figure 8.35
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If the graph of the sine function is assumed to be a

smooth curve, then the points may be connected as in Figure 8.16.

1

a 2
4

-1

Figure 8,36

Sometimes the graph of the sine function is drawn using

degree measures of angles for x in the rule s(x) = sin x. This

does not change the basic characteristics of the graph. (See

2.

-1

gob Are -2256 .240% .2704 Sob 31641 Sat X
i 4 I

3o, 454 Gar yl a 136" 15&°

Figure 8,37

The exercises in Section 8,14 deal with the graphs of the

sine and cosine functions and functions obtained from them. As

an aid in sketching these graphs, Table 8.2 listing values for

the sine and cosine functions is included at this time. Table

8.2 will also be needed for the exercises in Section 8.16.
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Angle Angle
Measure sine cosine Measure sine cosine
(degrees) (degrees)

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

N
29
30
31
32
33
34
35
36
37
38
39
4o
41
42
43
44
45

0.017 1.000 46 0.719 0.695
0.035 0.999 47 0.731 0.682
0.052 0.999 48 0.743 o.669
0.070 0.998 49 0.755 0.656
0.07 0.996 50 0.766 0.643
0.105
0.122
00.139

0.995
0.993
0.990

51
52
53

0.777
0.788
0.799

0.629
0.616
0.602

0.156 0.988 54 0.809 o.588
0.174 0.985 55 0.819 0.574
0.191 0.982 56 0.829 0.559
0.2C3 0.978 57 0.839 0.545
0.225 0.974 58 o.848 0.530
0.242 0.970 59 0.857 0.515
0.259 0.966 6o 0.866 0.500
0.276 0.961 61 0.875 0.485
0.292 0.956 62 0.883 0.469
0.309 0.951 63 0.891 0.454
0.326 0.946 64 0.899 0.438
0.342 0.940 65 0.906 0.423
0.358 0.934 66 0.914 0.407
0.375 0.927 67 0.921 0.391
0.391 0.921 68 0.927 0.375
0.407 0.914 69 0.934 0.358
0.423 0.906 70 0.940 0.342
c.438 0.899 71 0.946 0.326
0.454
0.469

0.891
0.883

72
73

0.951
0.956

0.309
0.292

0.485 0.875 74 0.961 0.276
0.500 o.866 75 0.966 0.259
0.515 0.857 76 0.970 0.242
0.530 o.848 77 0.974 0.225
0.545 0.839 78 0.978 0.208
0.559 0.829 79 0.982 0.191
o.574 0.819 0.985 0.174
0.588 0.809 81 0.988 0.156
0.602 0.799 82 0.990 0.139
0.616 0.788 83 ''0.993 0.122
0.629 0.777 84 0.995 0.105
0.643 0.766 85 0.996 0.087
0.656 0.755 86 0.998 0.070
0.669 0.743 87 0.999 0.052
0.682 0.731 88 0.999 0.035
0.695 0.719 89 1.000 , 0.017
0.707 0.707

Table 8.2

191



- 188 -
8.14. Exercises

1. From Table 8.2 find the following:

(a) sin 27° (b) cos 27°

(c) sin 40° (d) cos 50°

(e) sin 10° (f) cos80°

(g) sin 48° (h) cos 42°

2. Use Table 8.2 to find sin 130°. (Hint: The figure below,

suggesting a reflection, suggests a way in which "sin 1300"

may be read from the table, even though "130°" is not

listed there.)

3. Use Table 8.2 to find the following: (see Exercise 2):

(a) cos 130°

(c) cos 200°

(e) cos 290°

(g) cos 269°

(b) sin 250°

(d) in 290°

(f) sin 179°

(h) sin 359°

4. Draw graphs for the following functions on the same set

of axes: I

(a) Function f such that f(x) = sin x, 0 S x < 2r.

(b) FunLon g such that g(x) = -sin x, 0 x < 2r.

What transformation of the plane may be used to relate

these twcdgraphs?
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5. Draw graphs of the following functions on the same: set

of axes.

(a) Function f such that f(x) = sin x, Ox<27r.

(b) Function g such that g(x) = 2sin x, 0 S x < 27r.

( c ) Function h such that h(x) = -2 sinx, 0 x < 27r.

(d) Give the range for each of the functions f, g, and h.

6. Draw graphs of the following functions on the same set of

axes.

(a) f: x sin x, 0'( x < 27r.

(b) g: x (sin x) + 2, 0 < x < 27r.

(c) h: x (sin x) - 2, 0 x < 27r.

(d) What plane transformation relates the graphs of g

and h?

7. Draw the graph of the function c with rule c(x) = cos x,

0 < x < 27r.

8. Draw the graph of the cosine function, using degree measure

of angle on the x-axis.

9. Draw the graphs of the following functions on the same set

of axes.

(a) Function f such that f(x) = sin x, 0 x < 27r.

(b) Function g such that g(x) = cos x, 0 S x < 27r.

(c) Function [f +g] such that [f +g](x) = sin x + cos x,

0 x < 21r.

10. Draw the graphs of the following functions on the same set

of axes:

(a) f: x--cos x, 0 S x < 27r.

(b) g: x--3(cos x), 0 x < 27r.
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(c) h: x 3(cos x), 0 < x < 2r.

(d) k: x (cos x) + 3, 0 S, x < 27r.

* 11. Draw the graph of the function f such that f(x) = sin ;oc,

O x < 471-.

* 12. Draw the graph of the function g such that g(x) = cos 2oc,

O x < 471-.

13. (a) What is sin tir + sin fir?

(b) Explain how the above can be predicted from the graph

of the sine function.

14. (a) What is sin kir + sin ;r?

(b) What is sin 120° + sin 240°?

(c) Complete the following: sin 170° + sin = O.

15. (a) What is cos ir + cos 3.17r?

(b) Explain how the above can be predicted from the graph

of the cosine function.

16. (a) What is cos ir + cos ?Tr?

(b) What is cos 30° + cos 150°?

(c) Complete the following: cos 43° + cos = O.

8,15 Law of Cosines and Law of Sines

One of the many applications of circular functions is that

of finding unknown lengths of sides and measures of angles in

a triangle.

Example 1. A surveyor wants to find the distance across a

marsh, from A to B. He can find a point C for

which he can measure directly BC, AC, and /C.

For the data shown in Figure 8.38 find AB (to
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the nearest yard).

C

Figure 8.38

The surveyor begins the solution of the problem

like this:

(AB)2 = 1002 + 1502 - 2(100)(150)(cos 1100).

Why is the surveyor's method in Example 1 correct -- or is

it? Instead of working with the particular triangle of that

example, look at triangle ACB in Figure 8.39 In this triangle,

let AB = c, AC = b, and BC = a. (Thus, the side "opposite"

angle C has length c, etc.)

Figure 8.39
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The following conclusions can now be drawn:

(1) The coordinates of A are (b,0). (Remember that b is

the length of segment AZ.)

Also of course the coordinates of C are (0,0).

(2) If B' is the point at which CB intersects the unit

circle, then the coordinates of B' are (COSINE C,

SINE C).

We shall write these coordinates as (cos C, sin C),

to mean the sine and cosine functions of the measure

of C.

(3) B is the point of intersection of CB with a circle

having center C and radius a. (Remember that a is

the length of segment Mi.)

So B is the image of B' under the dilation, with center

(0,0) and scale factor a.

Therefore, the coordinates of B are (acos C, sin C).

Figure 8,40 shows triangle ACB with the coordinates of all

vertices labeled.

(a cos 0,a sin C

"4'4 r) II"
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Applying the distance formula to segment Ali;

ca = (oos C - b)a + (asin C 0)2

= aacosaC - 2abcos C + b2 + aasinaC

= aa(cosaC + sin3C) + 1)2 2abcos C

= as (1) + ba - 2ab-cos C

= as + ba - 2abcos C.

It should now be clear why the surveyor's method in Example 1

is correct.

Example 2. Find the length c (where c = AB) in the triangle

in Figure 8,41,

12

10

Figure 8,41

ca = as + ba - 2ab-cos C

= 10a + 122 - 2(10)(12)cos 800

= 100 + 1b4 -. (240)(.174)

244 - 41.76
b

= 202.24.

Therefore c =4202,24

mr14.2 (to the nearest tenth).

The formula "c2 = as + ba - 2ab-cos C" is a form of the

Law of Cosines. The "unknown" side need not be called c; it may

be either a or b (or indeed some other variable). However, the
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"pattern" of the Law of Cosines remains the same.

Example 3, In triangle ABC (Figure 8,42), mLA = 45° and

mLB = 60°. If BC = a = 10, what is the length

of side AC?

C

0

/90 6Q'\

Figure 8,42

The problem in Example 3 is somewhat like that in Example

1; an "unknown part" of a triangle is to be found. And yet the

problem is different. It cannot easily be solved by using the

Law of Cosines (try it.) The development below results in a

formula which may be used to solve Example 3.

We introduce the coordinate system in three different ways

with respect to the same triangle ABC.

(a cos Cja sin C

(a)

(a)
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C(b cos A, b sin A)

(b)

(c cos B, c in B) A

Figure 8,43

(c)

In Figure 8.43(a) the coordinates of B are (acos C, asin C)

and AC = b. If we let K denote the area of triangle ABC, then

K =
1
-.13.a.sin C.

The triangle ABC in Figure 8,!.3(b) is congruent to the

triangle in Figure 8.43(a). Now however, the coordinates of A

are (0,0), and the coordinates of C are (bcos A, basin A). And

AB = c. Therefore,

K
1

c.b.sin A.

Once again, the triangle ABC in Figure 8,43(c) is congruent
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to the other triangles. Now however, the coordinates of B are

(0,0), the coordinates of A are (ccos B, csin B), and BC = a.

Therefore,

K = 2--a.c-sin B.

These are expressions for the measures of area of congruent'

triangles. Since we assign equal measures to areas of congruent

triangles we have:

(b)(a)(sin C) = k(c)(b)(sin A) = 2(a)(c)(sin B).

From 1(b)(a)(sin C) = i.(c)(b)(sin A), we get

a _ C
11= .

1 1
From e.c)(b)(sin A) = 7(a)(c)(sin B), we get

b a
WIR7 =sine..

Thus, by commutativity and transitivity of equality, we have:

a__b c
sITT 7317917 WrI77 .

This formula is called the Law of Sines. In words, it says that

for a given triangle the ratio of the length of a side to the

sine of the opposite angle is the same, regardless of which side

is.chosen. This formula may be used to solve the problem in

Example 3, as follows (see Figure 3,42):

b a

b 10
ifirir593

b 107855 -7757

0 0
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8.668, = 777

= 12.2 (to the nearest tenth).

8,16 Exercises

1. In a certain triangle ABC, a = 20, b = 10, and m(LC) = 200.

Use the Law of Cosines to find c.

(Note: The same notation is being used here as in Section

8.15. That is, AB = c, the side opposite LC; BC = a, the

side opposite LA; AC = b, the side opposite LB.)

2. In triangle ABC, a =5, b = 12, and m(LO) = 90°. Use the Law

of Cosines to find c.

3. In Section 843:. the Law of Cosines was given in the form

c3 = a2 + ba - 2ab(cos C),

in which c is considered as the "unknown side."

(a) Write a form of the Law of Cosines in which a is

considered as the "unknown side." Thus, the formula

should begin

as =

(b) Give a form of the Law of Cosines in which b is

treated as the "unknown side."

4. If the Law of Cosines is used to find the length of a side

of a triangle, what other parts of the triangle must be

known?

5. In triangle ABC, b = 12, c = 6, and LA has measure 520.

Use the Law of Cosines to find a.

6. In triangle ABC, a = 12, c = 6, and LB has measure 1280.

Use the Law of Cosines to find b.
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7. Suppose the Law of Cosines, c2 = a2 + b2 - 2ab(cos C), is

applied to a triangle ABC in which LC has measure 90°.

(a) What is cos C?

(b) What is the product 2ab(cos C)?

(c) What already familiar property of a right triangle

results?

8. In triangle ABC, b = 10, c = 12, and LC has measure 600.

Use the Law of Sines to find the degree measure of LB.

9. The longer diagonal of a parallelogram is 10 inches long.

At one end the diagonal makes angles of 35° and 25° with

the sides of the parallelogram. Find the lengths of the

sides of the parallelogram. (Hint: Use the Law of Sines.)

10. Find the angles of a triangle if its sides measure 3, 4,

and 5.

11. In triangle ABC, LC has measure 90°.

a
F(a) Use =--)E. to show that sin A =

a
n IE77

(b) Also use the Law of Sines to show that sin B =

A
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12. Use the result of Exercise 11(a) to find a in the figure.

a

13. Use the result of Exercise 11(b) to find b in the figure.

A

b

B

14. If ABC is a triangle, is it possible to find all the other

sides and angles of the triangle if:

* (a) LA, a, and b are known?

(b) LA, LB, and LC are known?

(c) a, b, and c are known?

(d) LA, LB and c are known?

(e) b, a, and LC are known?

8,17 Summary

LAOB is an ordered pair of rays (0A,OB), with OA called

the initial side, and OB the terminal side. LAOB is in standard

position if OA is the positive x-axis in a plane rectangular

coordinate system.

If LAOB is in standard position and intercepts an arc of

length a on the circle x2 + ya = r2, then the real number ;ris

2,03
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assigned as the radian measure of the angle. In the case of the

unit circle, 9 9
= = 9.

The function SPSA --1-11-0,R, which assigns to each standard.

position sensed angle its radian measure, has (x : 0 S x < 2r) as range,

Two sensed angles in the plane are congruent if there is

a direct isometry that maps initial side onto initial side, and

terminal side onto terminal side.

If LAOB is in standard position, and its termiaal side

intersects the unit circle at the point (x,y), then SINE(LAOB) =y,

and COSINE(AOB) = x. In this way the circular functions SINE

and COSINE are defined, each with the set of standard position

sensed angles as domain and (x: -1 S x i 1) as range.

If SINE(ZAOB) = y, and hirA0B = A, then sin 8 = y. Thus,

sine = [SINE 0 m-1]

If COSINE(710B) = x, and m7A0B = A, then cos 9 = x. Thus,

cosine = [COSINE ° m-1]

In this way, the 'sine and cosine functions are defined,

each with (x: 0 x < 2r) as domain, and (x: -1 S x S 1) as

range.

Degrees as well as radians may be used to measure sensed

angles. r radians = 1800.

If ABC is a triangle, with AB = c, AC = b, and BC = a, then

the relation

ca = as + ba - 2abcos C

always holds, and is called the Law of Cosines.

Also, in any triangle ABC, the relation
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a b c

HE'S -sandFiTrU

always holds, and is called the Law of Sines.

8.18 Review Exercises

1. (a) What is the initial side of MST?

(b) What is the terminal side of GRST?

2. Name the two sensed angles determined by CD and OF?

3. Define a sensed angle in standard position.

4. (a) If a standard position sensed angle intercepts an

arc of length 7r. on the circle xa + y2 - 4, what is

the radian measure of the sensed angle?

(b) If a standard position sensed angle intercepts an arc

of length 74: on the unit circle, what is the radian

measure of the sensed angle?

5. Draw the unit circle and sensed angles in standard position

so that the following statements

(a) m(LB) =

(c) m(goD)

(e) m(g0F) =

6. The terminal side of MOB, in

the unit circle at (i,4/15).

(a) What is SINE(LAOB)?

(b) What is COSINE(210B)?

7. (a) If SINE(ZIOB) = 4, what

COSINE(710B)?

205
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(d) m(lXoE) =
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(b) If COSINE(ZWOB) = a, what are the possible values of

SINE(LAOI)?

8. MOB is in standard position, and intersects the unit circle

at

(a) What is SINE(ZAOB)?

(b) What is the length of the arc wbich LOB intercepts

on the unit circle?

(c) What is m(a0B)?

(d) What is sin ?pr?

9. (a) Give the domain and range of the SINE function for

sensed angles in standard position.

(b) Give the domain and range of the sine function.

10. Use the identity siren + cos39 = 1 to show that cos n

cannot be greater than 1.

11. Complete the following:

(a) 30° = radians (b) r radians = 0

(c) zr radians = (d) qr radians = 0

(e) 330° = radians (f) 150
o

= radians

12. Complete the following:

(a) sin 135° =

(b) cos 315° =

(c) sin 120° =

(d) cos 210° =

13. If < q < r, then which of the following is true?

(a) sin A > 0 and cos A > 0 C cA)
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(b) sin > 0 and cos A < 0

(c) sin e < 0 and cos 0 < 0

(d) sin A < 0 and cos A > 0

14. In the same set of axes, draw the graphs of two functions

f and g with rules f(x) = 2sin x and g(x) = 2cos x, each

with domain (x: 0 x < 27r) .

15. Consider the graph of the function s with rule s(x) = sin x,

0 x < 27r.

(a) Does the graph of x have point symmetry? (What is

the image of (0,0)?)

(b) Does the graph of x have line symmetry?

16. In AABC, Lt. has measure 50°, LB has measure 60°, and BC = 4.

(a) What is the degree measure of LC?

(b) Use the Law of Sines to find AB and AC.

17. In pABC, LA has measure 30°, LC has measure 30°, and BC = 10.

(a) What is the degree measure of LB?

(b) Use the Law of Sines to find AC and AB.
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Chapter 9

INFORMAL SPACE GEOMETRY

9.1 Space Geometry and Plane Geometry

Although we live in a three-dimensional space, most of

our previous study of geometry' was limited to two-dimensional

sets of points. "Lattice Points in the Plane," "Segments,

Angles, and Itometries," "Affine Plane Geometry," "Coordinate

Geometry," and "Transformations in the Plane" were all investi-

gations of geometrical figures in a single plane.

This restriction to planar sets of points has two justi-

fications. First, a wide range of practical geometry problems

involve only two-dimensional figures such as parallel and

perpendicular lines, angles, rectangles, and so on. Second,

many of the properties established for planes and subsets of

planes lead to analogous properties of space and subsets of

space. This chapter generalizes the notions of incidence,

parallelism, perpendicularity, and coordinate system to three

dimensions.

9.2 Planes in Space

We think of a plane as being flat, and extending without

boundary. In earlier chapters we studied certain subsets of a

plane (lines, rays, segments, angles, polygons, etc.) These

sets are also subsets of space as are planes themselves.

The surface of a table is often suggested as an illustration

of a plane. A table top is not a plane because it does not

-204- 248
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extend without bound, but it usually is flat. If you place a

straight ruler on such a table in any position whatever, each

point of the ruler will be in contact with the table. If you

perform the same test on a warped table or the surface of a

corrugated roof, the ruler will not touch the surface at all

points. This carpenter's test for flatness can be formalized

to give a mathematical description of a plane.

Observation 1. A plane is a set of points with the

property that whenever two points are

in the set, the line containing them is

in the set.

Notice that the line joining any two points of the surface

must lie entirely in the surface. Ihis phrasing avoids surfaces

with holes, such as a slice of Swiss cheese (see Figure 9,1),

Figure 9,1

(Line PQ lies in the surface, but RS does not.)

surfaces that are curved, such as a waste paper basket
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Figure 9.2

(The line joining P and Q lies on the surface of the basket,
but the line joining P and R does not. The line joining any
two points on the surface must lie in the surface.)

and surfaces that are bounded (see Figure 9.3).

Figure 9.3

(The line PQ extends without bound.)

Activity 1. Materials Needed: one piece of cardboard

(any shape) the size of this book or larger

and three sharpened pencils of the same

length.

210



-207 -

First, hold a pencil vertically with the pencil point up.

Place the cardboard so that it touches the pencil point. In

how many positions can you hold the cardboard? Do the

different positions all represent different planes?

Second, hold two pencils vertically with points up.

Place the cardboard so that it touches both pencil points. In

how many positions can you hold the cardboard? Do the different

positions represent different planes?

Third, hold three pencils vertically with points up,

placing them in a line, and place the cardboard so that it

touches the three pencil points. In how many positions can

you place the cardboard? Do the different positions represent

different planes?

Finally, hold three pencils so that they are not in a line

(see Figure 9,4). Hold the cardboard so that it touches the

three pencil points. In how many positions can you place the

cardboard?

Figure 9.4
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Now think of the pencil points as mathematical points and

of the cardboard as a plane. Answer the following questions

on the basis of your observations in Activity 1:

(1) How many planes are there that contain one given

point?

(2) How many planes are there that contain two given

points?

(3) How many planes are there that contain three given

points if the points are collinear? if the points

are non-collinear?

Your experience in this activity has probably led you to

conclude that there are many planes that contain any given single

point in space, or any given pair of points in space, or any

given triple of collinear points in space. However, the situation

is different with three given non-collinear points.

Observation 2. Given three non-collinear points there is

one and only one plane that contains them.

A quick glance at your own classroom - whose walls, floor, and

ceiling represent planes - makes one other fact of space obvious.

Observation 3. Not all points lie in the same plane.

As convincing justification for this observation, try to imagine

a single flat surface that contains the points at the (1) front

left bottom, (2) front right bottom, (3) front right top, and

(4) rear right bottom corners of the room!

The exercises that follow present other combinations of

points that may or may not lie in a plane.
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9.3 Exercises

1. How many planes are there containing

(a) 3 given collinear points?

(b) 4 given collinear points?

(c) a given line?

2. If two distinct lines intersect in a point, how many planes

are there that contain both lines? Describe a physical

situation that illustrates your answer.

3. If m is a line and P a point not on m, how many planes are

there that contain P and m? Describe a physical situation

which illustrates your answer.

4. If m and n are distinct parallel lines, how many planes are

there that contain both lines? Describe a physical situa-

tion that illustrates your answer.

5. Three lines meet in the point determined by the lower right

front corner of your classroom: the lines of intersection

of the front wall and the floor, the right side wall and

the floor, and the front and right side walls.

(a) Is there a plane containing all three lines?

(b) How many planes are there that contain at least two

of these lines?

(c) Imagine a diagonal line running from the point

described above to the upper left rear corner of the

room. Is there a single plane containing all four

lines now under consideration? How many planes are

there that contain at least three of thy: four lines?

at least two of the four lines?
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6. Let P, Q, R, S be distinct points, no three of which lie

on the same line.

(a) For (every, some, no) choice of such points, there

is a plane containing all four points. Describe

physical situations illustrating the answer you

chose.

(b) How many planes are there that contain at least three

of the four points? Does this number depend on the

location of the points? If so, how?

7. If P, Q, R, S are the points determined at the front right

bottom, front right top, front left bottom, and back

right bottom corners of a room,

(a) how many planes are there that contain all four points?

(b) how many planes are there that contain at least three

of the points?

(c) how many planes are there that contain at least two

of the points?

8. Given two lines m and n is there always a plane that

contains them? Illustrate your answer by describing

appropriate physical situations.

9. Three legged stools are very common while two legged

stools are as scarce as hen's teeth. Use the ideas

discussed in Section 9.2 to explain this phenomenon.

10. Given a four legged table suffering from wobbles because of

uneven legs, what is the minimum number of legs needing

shortening to steady the table?
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11. Describe several physical situations representing two

intersecting planes.

(a) What geometric figure is determined by the set of

points common to the two planes?

(b) If two planes have points P and Q in common, is line

161 also common to both planes? Do any observations

about the properties of planes justify your answer?

12. Which of the following physical objects can serve as

models of planar surfaces? In each case explain your

answer.

(a) The floor of your classroom.

(b) The roof of the U. N. General Assembly Building.

(c) A basketball.

(d) A bath sponge (with rectangular faces).

(e) The surface of Lake Placid (on February 1).

9.4 Parallel Lines and Planes in SZace

In plane geometry parallelism is an important relation

between lines. In what follows we shall use the Greek letter

"r" to denote a plane. Lines will be denoted by lower case

letters such as "m", "n", etc.

Definition 1. Lines m and n in plane r are parallel if

and only if m = n or m n n = 0.

A line is considered parallel to itself, and two lines in a

plane are parallel if they have no points in common.
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You can probably find many objects that suggest models

of parallel lines: the lines of notebook paper, railroad tracks,

the lines where ceiling and floor meet a single wall of a room,

and many others. What about the lines formed by a river and

road passing over a bridge of that river? (See Figure 9,5.)

What about the lines

front wall meet, and

(See Figure 9.6.)

Figure 9.

in a room

where the

5

formed where the ceiling and

floor and a side wall meet?

IIIMM NM. MO MIND 11=1. 11=1. /=D NNW

Figure 9.6

Do those lines intersect? Are they parallel? They don't seem

to be related in the same way as parallel lines in a plane.
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As a simple experiment, have a friend hold two pencils

simulating the positions of the lines described in Figures 9,5

and 9.6. Is there a single plane that contains both of these

lines? Use a piece of cardboard and try to fit it along both

pencils. Remember, of course, that the pencils and cardboard

are bounded in size and therefore might lead you to a false

conclusion.

Next try to find a single plane containing two lines which

are parallel. Experiment with the pencils and cardboard again

and compare your findings with those above when the pencils were

positioned differently.

The preceding experiments should make the following defini-

tions clear:

Definition 2. (a) If two lines lie in the same plane,

they are called coplanar.

(b) Two lines in space which are not

coplanar are called skew.

Therefore, the pairs of lines described in Figures 9,5 and 9.6

are skew. The existence of skew lines in space emphasizes the

importance of the phrase "in plane in the earlier definition

of parallel lines. There are pairs of lines in space that do not

intersect and are not parallel.

Although it is difficult to sketch space figures and relation-

ships on a flat sheet of paper, the following techniques are gen-

erally used:
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(1) A plane is represented by a parallelogram - -with the

understanding that the edges of the parallelogram do

not indicate boundaries of the plane.

(2) Parallel lines are usually shown in a plane, as in

Figure 9.7.

Figure 9.7

(3) Skew lines are represented as non-intersecting lines.

In Figure 9.8 the drawing is intended to show that

line n "passes under" line m.

Figure 9.8

Lines in space are either intersecting, parallel, or skew.

In what ways can a line and a plane be related? If line m inter-

sects plane 71-, this is usually sketched as in Figure 9.9.

218



- 215 -

Figure 9.9

Question. What if line m intersects plane' r in more than

one point?

Activity 2. What are the possibilities if line m does not inter-

sect plane 7T? Using a yardstick as a model of a line, and a

table top as a model of a plane, place the "line" so that it is

everywhere equidistant from the "plane"; that is, so that each

point on the yeardstick is the same height above the table top.

Next place the yardstick line so that the distance from a point

P on the stick to the table top is greater than the distance

from another point Q on the stick to the table top (but keep the

yardstick from touching the table). You will probably agree

that although in both cases the intersection of the physical

models for the line and the plane are empty, the first case

represents the natural meaning of "a line parallel to a plane."

In the second situation the line will eventually intersect

the plane because the line and the plane represented actually

extend without bound. The above, and the definition of parallel

lines, suggest the following defirition:
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Defirition 3. Line m is parallel to plane r (or r is parallel

to m) if and only if m is in r or m n r = 0.

A line parallel to a plane is usually drawn as in Figure 9.10.

Figure 9.10

There is no such thing as a line "skew" to a plane in three-dimen-

sional space sir any line that is even slightly inclined to a

plane will intersect that plane.

Again using a yardstick as a model of a line, a table top as

a model of a plane, and a pencil point as a model of a point not

on the plane, try to hold the yardstick in several different po-

sitions- -each of which represents a line through the pencil point

parallel to the given plane. How many lines are there through a

point P that are parallel to plane ir? How would you describe

the figure formed by the lines through P that are parallel to

ir?

What possible relationships can exist between two planes

in space? It seems reasonable to say that two planes intersect

if they have at least one point in common; in fact, if you

look at the examples of intersecting planes around you, it

appears that any two planes that intersect at all must have an

entire line in common.
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Experimenting with pieces of cardboard to represent planes

might lead you to conjecture that some planes have only one

point in common. (see Figure 9.11),

Figure 9.11

but remember that planes extend without bound. (see Figure 9.12).

Observation 4. If two planes have a point in common, they

have a line in common.

Figure 9.12

The definition of parallel lines and the definition of a

line parallel to a plane suggest the following similar definition

for parallel planes.

Definition 4. Planes vi and 77.11 are parallel, if and only

if they are the same plane or wi fl Ira = 0.

Notice that it is impossible to have two disjoint planes

that are not parallel. 221.
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It is easy to find familiar objects that suggest models of

parallel planes: for example, the floor and ceiling of the

classroom, the opposite walls of the classroom, or the shelves

of a bookcase. Parallel planes are usually drawn as parallel

parallelograms (see Figure 9.13), where again, the edges of the

parallelograms do not represent boundaries of the planes.

Figure 9.13

(The dashed lines indicate the part of 7.2 hidden by 77'1.)

Although some objects that suggest planes may appear to be

neither intersecting nor parallel, remember that planes extend

without boun I. Thus if two planes are not everywhere equidistant,

they must intersect.

In an earlier experiment you found that if P is a point,

there are an infinite number of lines that contain P and are

parallel to r. The infinite set of lines forms a plane contain-

ing P and parallel to r. This suggests a generalization of the

parallel postulate stated earlier for lines in a single plane;

namely, through a point there is one and only one plane para-

llel to r.

If you do some further experimenting with pieces of card-

board it may seem that you can find other planes through P that

do not meet plane rl. (See Figure 9.14.)
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Figure 9.14

This experimentation, which may lead you to doubt the parallel

postulate for planes in three-dimensional space, illustrates

again the limitations of physical models for geometric objects.

Although the pieces of cardboard used to represent planes are

in some cases very helpful, they have one basic feature that

makes them inadequate---the cardboard models of planes are

bounded and mathematical planes are not. Thus, despite the

fact that "cardboard planes" can be placed to seem neither

parallel nor intersecting, the planes that these pieces of

cardboard represent will meet because they extend without bound.

Observation 5. If P is a point and r1 is a plane, there

is exactly one plane rs containing P and

parallel to

The following exercises explore many more possible relations

of planes and lines in space.
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9.5 Exercises

In Exercises 1 -- 15 determine whether the given statement is

true or false. Then describe a physical situation or make a

drawing that supports your answer. Remember, a true statement

must be true without exception. (In these sentences "A" re-

presents a line, "r" a plane, and "P" a. point.)

1. If line LIU parallel to line As and line /9 is parallel to

line As, then 1,1 is parallel to A2.

Answer (sample): True--For example, the line Al formed where

the ceiling of a room meets the right side wall is parallel to

the line As formed where that wall meets the floor, and the

line As formed where the ceiling meets the left side wall is

also parallel to the line As formed where the right side wall

meets the floor. The lines Al and /9 where the ceiling meets

the right and left side walls are, of course, parallel.

£ 1 1 1 4 and 4 1 1 . 6 implies Al I I /9

2. If Atilr and £91(r, then A111/9.

3. If wilirs end rsillr9, then r1 llr9.

4. If r111/ and r911A, then rillr9.

5. If Allir end /911r, then Al end A, are skew.

6. If AIIIA9 and /911/s, then Al and A2 are skew.

224



- 221 -

7. If 111r1 end r111r2, then 11Ir2.

8. If 11 1 112 and r11.11, then r11/2.

9. If 1111r end 12 skew to 11, then /2 intersects n.

10. If 121112 and 11 intersects r in a single point, then £2

intersects r in e single point.

11. If r1 I Ir2 and A intersects n1 in a single point, then A

intersects r2 in a single point.

12. If rillr2 and r1 nr3 - Al, then n2 intersects r2 in a line

t2, with 1111/a.

13. If 111Ir end A1 nA2 = (0, then £211r.

14. Find several physical situations that illustrate each of the

following properties of lines and planes that were observed

in the preceding aection:

(a) Skew lines do not intersect.

(b) A line parallel to a plane is everywhere equidistant

from the plane.

(c) Two parallel planes are everywhere equidistant from each

other.

(d) If P is a point, there are an infinite number of lines

that contain P and are parallel to plane n.

15. Make drawings to indicate the following:

(a) Two intersecting lines both parallel to a plane.

(b) Two parallel planes, both intersected by e line.

(c) Two intersecting planes.

(d) Two parallel planes intersected by a third plane.
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roach to Geometry in 3 S ace

The exploratory activities of Sections 9.2 and 9.4 have

provided you with some useful notions about points, lines, and

planes in 3-space. You have observed that:

(Observation 1) A plane is a set of points with the property

that whenever two points are in the set, the

line containing them is in the set.

(Observation 2) Given three non-collinear points, there is

one and only one plane that contains them.

(Observation 3) Not all points lie in the same plane.

(Observation 4) If two planes have a point in common, they

have a line in common.

(Observation 5) If P is a point and Ti is a plane, there is

exactly one plane ra containing P and parallel

to rl.

Accepting these given observations as reasonable descriptions

of reality and remembering those notions about points and line:,

in a single plane which you studied in previous courses, you

are in a good position to deduce additional statements about

points, lines and planes in 3-space.

We could refine these observations and state them as

"axioms" for a 3-dimensional affine geometry. We could then

define precisely some of the terms we have used, and proceed

to deduce various statements which we would then call theorems.
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In fact, this is what we did in our study of plane geometry.

However, we do not intend to develop a formal axiomatic

system such as the one studied for 2-space; rather, we want

to demonstrate how logic can be used to build on a set of

accepted notions to increase our understanding of geometry.

In a set of exercises which follow this section, you will

have an opportunity to try out your deductive skills.

Example 1. Suppose we have a line m and a point P which

is not in m. How many planes are there that

contain both P and m? (See Figure 9.15.)

Figure 9.15

Recalling from our study of lines in a single

plane that a line contains at least two points,

we know that m contains two points which we

call Q and R. Since P is not in line m, while

Q and R are in m, we recognize that P, Q, and

R are three non-collinear points.

By Observation 2, three non-collinear points

(P, Q and R) are contained in one and only

one plane, say 7. But Q, R in 7 implies m = QR
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is in r, by Observation 1. Thus r is a plane

containing both P and m. Could there be two

such planes? Suppose 70 is a plane containing

m and P. Since m c V, and Q, R E m, it

follows that Q, R E 70: and so P, Q, R E r'.

By Observation 2, rt r. We therefore see

that:

A line and a point not in the line

are contained in exactly one plane.

Example 2. Let m and n be distinct lines which have a

single point of intersection P. (See

Figure 9.16.) How many planes contain both

lines m and n?

Figure 9.16

We know that there is a second point, call it

Q, on line m. Since P is the only point of

m which is also in n, we have line n and a

point Q which is not in n. In Example 1 we

showed that Q and n are contained in exactly

one plane, say r. Since P is in n, P is in r,
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and by Observation 1, m := PQ is in r. This r

is a plane containing m and n. As in Example

1, suppose r' is a plane containing m and n.

Then r' contains Q and n (why?), and we

conclude r' = r, or:

Two distinct lines which have a

single point of intersection are

contained in exactly one plane.

Example 3. Let m and n be distinct lines that are

parallel. Definition 1 assures us that there

is a plane that contains m and n. Can there

be another such plane? Try to imitate the

type of reasoning used in Examples 1 and 2

to prove:

If m and n are distinct parallel

lines, then they are contained

in exactly one plane.

9.7 Exercises

Using the ideas about lines in a single plane studied

in previous courses, your observations made in Section 9.4 and

listed for your convenience in Section 9.6, and the results

of Examples 1-3 in Section 9.6, try to demonstrate that the

following statements follow logically. In proving a new

statement, you may make use of any statement already proved.

Diagrams are required.
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1. Any pair of distinct parallel lines lie in exactly one

plane. (See Example 3 of Section 9.6.)

2. If a plane intersects one of two parallel planes, then it

intersects the other,

3. If a plane intersects two parallel planes, then the

intersections are parallel lines.

4. If a plane intersects one of two parallel lines in a

point, then it intersects the other line in a point.

5. If a line intersects one of two parallel planes in a point,

it intersects the other in a point.

6. If lines A and m are parallel, then any plane that contains

line A is parallel to line m.

7. For the set of all planes in 3-space, "is parallel to" is

an equivalence relation.

*8. For the set of all lines in 3-space, "is parallel to" is

an equivalence relation.

9.8 Coordinate Ss stems in 3-Space

In a previous course, you studied how coordinate systems

could be introduced into affine plane geometry. You may

recall that in order to do this it was necessary to add further

axioms to those for the affine plane. The new axioms served

to introduce the real numbers as coordinates for points on a line.

We will now see how coordinate systems can be introduced

into space geometry. Our development will be based on our

previous study of plane geometry, and the material in Sections
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9.6 and 9.7. You may be surprised to learn that the axioms

that we used previously for coordinatizing the affine plane

will serve equally well for coordinatizing affine 3-space.

You will recall that a coordinate system for a line is an

assignment that matches each point of the line with a unique

real number. The assignment is completely determined by the

choice of two points 0 and I, 0 to be assigned coordinate 0,

I to be assigned coordinate 1.

A coordinate system for a plane is an assignment that

matches each point of the plane with an ordered pair of real

numbers. The assignment is completely determined by the choice

of three non-collinear points 0, I and J, Oto be assigned

(0, 0), I to be assigned (1, 0), and J to be assigned (0, 1)

(see Figure 9.17). The choice of these three points allows us

to assign an ordered pair of real numbers to every point T in

the plane. Lines CI and CU are coordinatized

and 00, J--4.-1). The coordinates of a point T are deter-

mined by locating T with respect to the coordinatized lines

01 and AT.

(0,0
-10

T(a,b)

Figure 9.17
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The existence and uniqueness of coordinates for any point

T in a plane is guaranteed by the parallel postulate:

(1) There is a unique line through T parallel to ail (and

it intersects CI in a point with 0,I-coordinate a).
4

(2) There is a unique line through T parallel to II (and

it intersects tein a point with 0,J-coordinate b).

T is assigned coordinates (a,b).

We are now ready to tackle the task of introducing a olor-

dinate system into affine 3-space. We start by choosing four

non-coplanar points in space

6, I, J, and K,

no three of which are collinear. We know that four such points

exist becalise of Observation 3. We may refer to the quadruple

(a, I, J, K)

as the base for a space coordinate system which we are about

to introduce.

Let us call the line St the x -axis, the line tilthe

y-axis, and the line IK the z-axis. Next, let us introduce

a line coordinate system on each of the three axes, using

respectively the bases (0,I) (0,J) and (0,K). The point 0 is

therefore a common origin for all three axes (coordinate sys-

tem), and the points I, J, K are respectively unit points for

the x-, the y- and the z-axes. We may diagram our axes as

in Figure 9..18' ..

232



x -axis

- 229 -

x -axis

z -axis

Figure 9,18

Coordinate
axes in
space

Each pair of coordinate axes determines a unique plane

containing that pair of axes. (Why?) We call each of these

planes a coordinate plane. There are clearly three coordinate

planes. They are conveniently called the xy -plane, the yz-

plane and the xz -plane. (Which of these three coordinate

planes is depicted in Figure 9.18?)

Let us first consider any point X on the x.- axis. This

point will have a unique 0,I-coordinate which we shall call

the x-coordinate of point X. Similarly any point on the y-

axis will have a unique 01J-coordinate which we shall call the

Y-coordinate of that point. Finally, every point on the z-

axis has a unique O,K- coordinate which we shall refer to as its

z - coordinate.

Now let us consider any point P in space. By Observation 5

there exists a unique plane ,r1 which contains the point P and

is parallel to the .yz- plane. We know that the x-axis inter-

sects the yz-plane in the unique point O. It follows

that the X-axis must intersect the plane ri in some unique

point X. (See Ex. 10, Section 9.7.) This state of affairs

is diagrammed in Figure 9.19.
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74

6000ins P and
is liarallel to
!thitit yz -plane

Determination
of x-coordinate
for point P.

Figure 9.19

The point X has a unique x-coordinate namely its 6,I-coordi-

nate as described above. We shall agree to assign this value

to point P. We shall call it the x-coordinate of P. We shall

also assign an y-coordinate and a z-coordinate to point P.

To assign an y-coordinate to point P we use Observation 5 once

again to obtain a unique plane vi which contains P and is paral-

lel to the xz-plane. (See Figure 9.20.)
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y-axis
/

Determination
of y-coordinates
for point P.

Figure 9.20

x-axis

This plane wi must intersect the y-axis in a unique point Y.(See Ex.

10 of Sec. 9.7.)_g .7 , The point Y has a unique x,- coordinate namely

its 0;J-coordinate. We assign this value to point P as the

y - coordinate of point P. We leave it to the,stuftent to

describe in a similar fashion how we assign a z - coordinate

to point P. (See Exercise 2 in Section 9.9). The three coor-

dinates which are thus assigned to the point P are assembled

into an ordered triple (x, y, z), cAlled the coordinate triple

for point P. 435
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We have shown above that for each point P in 3-space,

there is a unique coordinate triple (x, y, z). Conversely,

once a coordinate base (O,I,J,K) has been chosen for a space

coordinate system, we can show that for each ordered triple

of real numbers (x, y, z) there is a unique point P in space

whose coordinates are precisely this ordered triple. In fact,

there is a unique point X on the x -axis whose AtI-coordinate

is x, there is a unique point Y on the . y-axis whose 0,J-coor-

dinate is Y and there is a unique point Z on the z-axis whose

C,K-coordinate is Z. By Observation 5 there is a unique plane

7r1 which contains point X and is parallel to the yz-plane.

Similarly there is a unique plane 7r1 which contains the point

Y and is parallel to the Xz-plane, and there is also a unique

plane r3 which contains the point Z and is parallel to the

xy- plane. From the fact that the three coordinate planes have

exactly one point 0 in common, it can be shown that the planes

wi, era, and vi have exactly one point in common.

Example, 1. Consider the plane r, which is parallel to the

xy-plane and which contains the point on the

z-axis with coordinates (0, 0, 3). Do you

agree that every point in this plane will have

3 as its z-coordinate? Why? This suggests to

us that a set description of this plane could

be (P(x, y, z) : z.= 3). Figure 9.21 depicts r.

236



- 233 -

Figure 9.21

From the previously described procedure for assigning

coordinates to point P, coordinates are real numbers. To

simplify the notation in the discussion which follows we will

not include the statement, in our set descriptions, that

x, y, z E R.

Example 2. What set is described by (P(x, y, z): z > 3)?

Do you recognize that the set consists of all

points in space which are "on one side" of the

plane described in Example 1, namely the side

which does not contain the origin (point MT

This set of points is an example of an open

h_ alf-space. Make a diagram selecting a suitable

drawing technique to depict this open half-space.

Perhaps you have noted that our coordinatization of affine

3-space, and ird'aed in our entire discussion in this chapter

up to now, we did not consider perpendicularity. In the set

of exercises which follows, we will deal with a large variety

of situations which can be investigated without introducing

perpendicularity.
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9.9 Exercises

1. (a) Explain why the y-axis can be described as:

(P(x, Y, z): x = 0, z = 0)

(b) Using set notation describe the z-axis.

2. Describe how a z-coordinate is assigned to a point P in

space.

3. Describe verbally and sketch the following sets of points:

(a) (P(x, y, z): x = 0, y > 0, z = 0)

(b) (P(x, y, z): x < 0, y = 0, z = 0)

(c) (P(x, y, z): x = 0, y = 0, z >0)

(d) (12(x, y, z ) : 0 < x < y, y = 0, z = 0)

(e) LP(x, y, z): y = 0)

(f) (P(x, Y, z): y > 0)

(g) (P(x, Y, z): y < 0)

(h) (P(x, Y, z): Y = 5)

*(i) (P(x, y, z): 0 < y < 5)

4. Using set notation, describe each of the following sets of

points:

(a) All points in the yz -coordinate plane.

(b.) All points on the negative z-axis.

(c) All points on a plane parallel to the xy -coordinate

plane and containing the point Z(0, 0, 5).

(d) All points of space that are between the xy -coordinate

plane and the plane described in (c).

5. Let (2, 0, 4) be the coordinate triple for a point A in

space. Using set notation, describe a plane which contains
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A and is:

(a) parallel to the xy-coordinate plane.

(b) parallel to the yz-coordinate plane.

(c) parallel to the xz-coordinate plane.

6. Sketch and describe in words the following sets of points:

(a) (P(x, y, z): x = 4, y = 3)

(b) (P(x, y, z): x = 2, z = 0)

*(c) (P(x, y, z): y = z)

7. Use set notation to describe the following sets of points:

(a) A line in the yz-coordinate plane, parallel to the

z-axis and containing the point (0, 2, 0).

(b) A line parallel to the z-axis containing the

point (2, 3, 0).

(c) A line in the xy-coordinate plane whose y-coordinate

is twice its x-coordinate.

*(d) A plane containing the z-axis and also containing

the point p(2, 6, 0). Sketch this plane.

*8. Sketch and describe in words the set of points:

(P(x, y, z ) : 0 < x < 4, 0 < y < 3, 0 < z < 2).
z-axis

9. One vertex of a tetrahedron

(triangular pyramid) is

chosen as the origin 0, and

and the other three vertices

A,B,C are chosen as the unit

points for a space coordinate

system as indicated in the

figure.
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(a) Write a coordinate triple for each of the vertices

O,A,B,C.

(b) If L,M,N,P,Q,R are midpoints of the edges as

indicated, express each of these midpoints as a coor-

dinate triple. (Hint: Use two-dimensional coordinates

within each coordinate plane, noting that the remaining

coordinate is zero in each case.)

9.10 Perpendicularity of Lines and Planes in Space

We have seen that if we choose two lines in space there

are three possibilities: they may be parallel, they may intersect,

or they may be skew. On the other hand if we choose two planes,

or if we choose a line and a plane, then there are only two possi-

bilities: they may either be parallel or they may intersect. The

reason for this is that the word "parallel" applied to two lines

does not mean the same thing as it does when applied to two planes

or to a line and a plane. (In the case of two lines, parallelism

includes an extra requirement, namely that the lines be coplanar.)

Similarly, the word "perpendicular" which thus far applies to

two lines, must be given a modified meaning when applied to two

planes or to a line and a plane. The activities described in

this section should help you get a clear picture of the various

meanings for the word "perpendicular" in 3-space.
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Activity 3. Materials needed: sharp pencils, unlined paper,

ruler, and one assistant.

Mark a point P on the paper and draw one line ti through

P. Place the point of the pencil on P and hold the pencil so

that it is perpendicular to the line 11. Hold the pencil in

a different position keeping it perpendicular to the line L.

What conjecture does this activity suggest concerning the num-

ber of lines in space perpendicular to a given line at a point

on that line? (See Figure 9.22.)

Figure 9.22

Keep the pencil
at right angles
to line Al

Now draw another line to on the paper through point P.

(See Figure 9.224 Repeat the above experiment using line ts,

i.e., hold the pencil in different positions keeping it perpen-,

dicular to line L. In these new positions, will the pencil

be perpendicular to line Al? Try to find a position for the

pencil so that it will be perpendicular to both Li and La.

(See Figure 9.22)
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Figure 9.23

When you have found this position keep the pencil fixed and

have an assistant draw other lines in the paper through point

P (see Figure 9,23). What do you notice about all of these

lines?

Question 1. If rr is a plane and P a point in r, how

many lines are there through P lying in r?

Question 2. If r is a plane, P a point in vs and Al a

line in r through P, how many lines can be

drawn in space through P and perpendicular

to line AI?

Question 3. If r is a plane, P a point in r, la and t2

two distinct lines in r through P, how many

lines can be drawn in space through P and

perpendicular to both LI and La?

Question 4. If a line m in space is perpendicular to

each of two intersecting lines Al and 12 at

point P, how is line M situated in relation
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to all other lines through P in the same

plane as LI and 6?

If you have performed the above experiwints carefully

and answered the questions correctly, you will now appreciate

the following definition and observation.

Definition 5. A line m is perpendicular to plane r at

P if and only if m is perpendicular to

every line in r containing P.

Observation 6. If a line m is perpendicular to each of

two intersecting lines in plane it at

point P, then m is perpendicular to plane

at P.

Activity 4. Materials needed: a rectangular 3x5 card, unlined

paper, sharp pencil, ruler.

Begin by drawing a line t on the 3x5 card perpendicular to

one of its longer edges. Place the card so that edge rests

on the unlined paper.

x 5 card

/ \
/ L /

-,

\ /
\ /
\
\ -- (line

(unlined perpendicular
4---- paper) to longer

edge)

Figure 9.24
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Tilt the card so that line L assumes various positions in

relation to the plane of the paper (see Figure 9.24). In

which of the positions for line t would you be willing to

say that the card is perpendicular to the unlined sheet of

paper?

Keep the long edge of the card in a fixed position against

the paper and rotate the card about this edge until it lies

fiat on the paper. Trace line t onto the paper, calling this

new line e Since L was originally perpendicular to the edge

of the card, what can you say about L'?

Definition 6. Two intersecting planes ri and ,r3 are called

perpendicular iff there is a line ti in rl,

and a line fa in raj such that each of /1

and La is perpendicular to the line of inter-

section of ri and 7f2, and ft is perpendfular

to ta. (See Figure 9.25.)

Figure 9.25
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Observation 7. If a line £ is perpendicular to a plane

r, then any plane containing f is perpen-

dicular to the plane iv,

Perform an experiment to test this observation, using a

pencil and several 3x5 cards.

In a plane, there is one and only one line perpendicular

to a given line at a given point on that line. Moreover,

there is one and only one line perpendicular to a given line

from a given point not on the given line (see Figure 9.26).

Figure 9.26

Do these properties carry over to perpendicular lines in

space? Are there corresponding properties for lines perpendi-

cular to planes? The next activity explores this question.

Activity 5. Materials needed: sharp pencils, unlined paper,

ruler.

Mark a point P on the paper and draw one line through P.

Place the point of the pencil on P and hold the pencil so

that it is perpendicular to the line. Hold the pencil in a
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different position, keeping it perpendicular to the line.

Among the lines perpendicular to the given line at P, how

many are perpendicular to the plane of the paper at P?

Next hold one of your pencils perpendicular to the plane

of your paper at P. Now hold another pencil as shown in Fi-

gure 9.27 (eraser to eraser), and try to make the second pencil

perpendicular to the line or to the plane.

Figure 9.27

Your attempts should suggest that from a point not on a given

line there is one and only one perpendicular to the given line,

and from a point not on a given plane there is one and only one

line perpendicular to that plane.

Lines perpendicular to planes are usually indicated by

drawing "vertical" lines as in Figure 9.28.
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Figure 9.28

9.11 Exercises

The following exercises involve lines and planes in

space, and the relations of perpendicularity and parallelism.

In Exercises 1--3 you are asked to perform some experiments and

from them draw a conclusion about lines and planes in space.

1. Draw several lines through a point P on a sheet of paper.

Can you hold a pencil with point on P so that the pencil

is perpendicular to only one line through P? so that it

is perpendicular to only two lines through P? so that it

is perpendicular to only three lines through P? Conclu-

sion.(sample): If P is a point in plane r and m a line

through P, m is perpendicular to r at P if m is perpendi-

cular to lines in r through P.

2. With an assistant, hold several pencils perpendicular to

the top of a table. What pattern do you see that should

hold in general?
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9.11 Exercises

The following exercises involve lines and planes in space,

and the relations of perpendicularity and parallelism. In

Exercises 1 - 3 you are asked to perform some experiments and

from them draw a conclusion about lines and planes in space.

1. Draw several lines through a point P on a sheet of paper.

Can you hold a pencil with point on P so that the pencil

is perpendicular to only one line through P? so that it

is perpendicular to only two lines through P? so that it

is perpendicular to only three lines through P? Conclusion

(sample): If P is a point in plane r and m a line through

P, m is perpendicular to r at P if m is perpendicular to

lines in r through P.

2. With an assistant, hold several pencils perpendicular

to the top of a table. What pattern do you see that should

hold in general?

3. Anchor a piece of string to some rigid object such as a

table and hold the other end so that it touches the floor.
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Now vary the position where the string touches the floor

trying to find the position that makes the length of the

string shortest. What generalization about distances does

this suggest?

In Exercises 4 - 9 determine whether the given statement

is true or false. Then describe a physical situation or make a

drawing that supports your answer. In these statements "A"

denotes line, 1r" a plane, and "P" a point. The symbol "I"

denotes "is perpendicular to," (Recall: A true statement must

be true without exceptions.)

4. If Al j 13 and A3 j 130 then £11 12..

5. If Al I. r and A, 1.1r, then Al IIA2.

6. If AillAn and Al jar, then 12

7. If r1 j A and 71.3 j A, thenrIllr2.

8. If Ai j and £31 I.3, then 11 j £3.

9. If Al j As and A2 j £3, then 11 and A, are skew.

9.12 Rectangular Coordinate Systems in Space

In Section 9.8 we coordinatized 3-space by introducing three

coordinatized lines, called axes. A procedure was then described

for designating an ordered triple of real numbers as coordinates

for a point in space. In Section 9.10 we explored the various

meanings for the word "perpendicular" as it relates to lines and

planes in space. In this section we will do some informal work

with coordinate systems in which the coordinate axes are mutually

prependicular. A system with three mutually perpendicular coordinate

axes is called a rectangular coordinate system.
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As before, we identify an origin c1 and unit points I on the

x-axis, J on the y-axis, and K on the z-axis, CI = Ca' = CK = 1.

Figure 9.29 depicts a rectangular coordinate system in 3-space.

The positive portions of the coordinate axes are represented by

Figure 9.29

solid lines, and the negative portions by broken lines.

Since the x-axis is perpendicular to each of the other two

coordinate axes at their point of intersection (N it is perpen-

dicular to the plane determined by these axes. In other words,

the x-axis is perpendicular to the yz-coordinate plane. In like

manner, the y-axis is perpendicular to the xz-plane, and the z-

axis is perpendicular to the xy-plane.

As a simple example of a space coordinate system, consider

the miniature three-dimensional space that your classroom con-

stitutes. (See Figure 9.30.)

(1) Let the x-axis be the line where the floor meets the

left side wall.

(2) Let the y-axis be the line where the floor meets the

front wall,
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(3) Let the z-axis be the line where the left side wa..1

meets the front wall.

(4) Let the unit on all three axes be 1 foot.
z-axis A

Front

=NO 40-.....J
I 1

I I

I

x-axis Figure 9.30

If the room is 10 feet high, 26 feet wide, and 36 feet long

(front to back), it is not hard to find the coordinates of the

following points:

(a) front, left, lower corner (A) (0,0,0)

(b) middle of the floor (B) (18,13,0)

(c) rear, right, lower corner (C) (36,26,0)

(d) front, right, lower corner (D) (0,26,0)

(e) front, right, upper corner (E) (0,26,10)

(f) middle of the front wall (F) (0,13,5)

(g) middle of the left side wall (a) (18,0,5)

(h) middle of the ceiling (H) (18,13,10)

(1) exact center of the room (L) (18,13,5)

(m) rear, right, upper comer (M) (36,26,10)
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Several of these points, which are related in an interesting way

geometrically, have coordinates that are related also. For in-

stance, points B and C lie on a line with the origin A(000,0),

Figure 9.31

and, geometrically (see Figure 9.31), B is the midpoint of seg-

ment AC. We know that in a coordinatized plane the midpoint of

a segment (whose endpoints have coordinates (xi, yi) and (x2, y,))

has coordinates

xi + xn yi + yn

' 2 )

The coordinates of B satisfy this relation if we ignore the 0 in

the third position of all three coordinate triples. Is there a

general midpoint formula in space?

Consider points L and M and the origin. The exact center

of the room should be the midpoint of the diagonal segment from

the front, left, lower corner to the rear, right, upper corner.

How are the coordinates of these points related?

A(0, 0, 0) L(18, 13, 5) M(36, 26, 10)

The coordinates of the midpoint are the averages of the corre-

sponding coordinates of the endpoints.
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0 +36 0 + 26 0 +10
18 =

2
0 13 = , and 5 = .

If you think this convenient relation was only coincidental, check

other triples of points such as A, F, and E, or L, B, and H.

If point M is the midpoint of segment ice,, where K has coor-

dinates (x2, y1, z1) and L has coordinates (x2, y,, then

the coordinates of M are given by

x2 + xi yi + y2 z2 + Z2

2 2 2 )

9.13 Exercises

1, Using the coordinate system described in the preceding

section, find the coordinates of the following points in the

classroom (assuming the dimensions given,)

(a) Middle of the rear wall.

(b) Middle of the right side wall.

(c) Middle of the left side wall,

(d) Rear, left, upper corner.

(e) Rear, left, lower corner.

(f) The midpoint of the segment joining the origin to the

exact center of the room.

2. Again using the coordinate system given for your classroom,

describe the locations of the points in space with the

following coordinates:

(a) (5, 0, 5)

(b) (40, 0, 5)

(c) (-5, 0, 5)
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(d) (0, -5, 5)

(e) (0, 0, -5)

(f) (-18, 13, 5)

(g) ( -18, -13, 5)

3. Use the midpoint formula to calculate the coordinates of the

midpoints of the segments with the following endpoints:

(a) (5, 10, 15), (7, 6, 3)

(b) (-5, 10, 15), (-7, 6, 3)

(c) (5, -10, 15), (-7, 6, -3)

(d) (5, 10, -15), (7, -6, -3)

4. Given a coordinate system for space, a translation is a map-

ping from space to space with rule of assignment of the form

T: (x, y, z) -1(x + a, y + b, z + c), where a, b, c are

real numbers. To locate the image of a point under the

translation 'Pt (x, y, z) + 2, y + 3, z - 2) we

start at the point, move 2 units parallel to the x-axis, 3

units parallel to the y-axis, and -2 units parallel to the

z-axis, and end up at the image of the point. Find the

images under this translation of the following points:

(a) (0, 0, 0)

(b) (-5, -3, -7)

(c) (11, 7, 2)

(d) (14, -9, 12)

5. Find the point in space whose image under the translation in

Exercise 4 is

(a) (0, 0, 0)

(b) (-5, -3, -7) 254
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(c) (11, 7, 2)

(d) (14, -9, 12)

6. Is every translation in space a one-to-one mapping? Why

or why not?

7. Is every translation a mapping of space onto space? Why or

why not?

9,14 Distance in Space

In Course II Chapter 6 you found a convenient formula for

calculating the distance between two points in a rectangular

coordinate system. In particular, if the coordinates of a point

T are (x, y) in some rectangular coordinate system for a plane,

then the distance from T to the origin is given. by,TXT77

Since space coordinate systems are such natural extension of plane

coordinate systems, it is reasonable to suspect that in a coor-

dinate system whose axes are mutually perpendicular (a rectangular

coordinate system in space) the distance from a point S with

coordinates (x, y, z) to the origin is given byc241-z22,

Or is it? Why not 3/x3 + ys + zs ?

To see that the first given formula is correct, consider

the problem of finding the distance from the exact center of the

room coordinatized in Section 9.12 to the front, left, lower

corner which is the origin,

The point C with coordinates (18, 13, 5) is a vertex of

right triangle OBC, (see Figure 9,32), and the distance we are

interested in is the hypotenuse OC of this triangle. The Pytha-
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gorean property of right triangles is suggested as a possible

aid in calculating the required length; but only one side of

the triangle is known-- BC = 5.

y

C (18,13,5)

B (18,13,0)

Figure 9.32

Fortunately there is a way we can calculate the length of the

other side, OB.

Since point B lies in the plane coordinatized by the x-axis

and the y-axis, and since it has coordinates (18, 13, 0), the

distance from B to the origin is 4(18)2 + (13)2, Therefore,

the length of OB is sr(18)2 + (13)2 . Applying the Pythagorean

property to triangle OBC, we find that the length of OC is

2

6(18)2 (13)2 (5)2

or

1

(18)2 + (13)2 + (5)2

which is precisely he answer predicted by the formula

x2 + y2 + z2
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Granting that the formulaCT+ y2 + z2 correctly

represents the distance from a point S with coordinates (x, y, z)

to the origin, can we find the distance from point S to a point

other than the origin? Suppose that point T has coordinates

(xl, y1, z1). One way to determine the distance ST is as follows,

Suppose we map each point of space onto a new point of space by

means of a translation. Since every translation is an isometry,

the distance ST ought to remain unchanged by the mapping, i.e.,

if S maps onto S' and T maps into T' then ST = S^1", Now if

we choose the translation defined by (x, y, z) (x - xi,

y y1, z - z1), we observe that under this mapping S maps into

(x - x1, y - y1, z - z1), but T maps into (x1 - xl, yl - y1,

z1 z1), i.e., T maps into (0, 0, 0), Hence the distance

from S to T is the same as the distance from (x xl y - y1,

z - z1) to the origin. This distance is therefore given by the

formula

(x - x1)2 + (y - y1)2 + (z 21)2

You should recognize this-formula as the naturaIgeneralization

of the corresponding distance formula for two dimensions

(See Course II, Chapter 6, Section 20,)

As an example, let us find the distance from the point S

with coordinates (3, -1, 5) to the point T with coordinates

(2, 1, 3), (See Figure 9,33,)
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Applying the distance formaa we obtain:

9.15 Exercises

y-axis

ST = F-177:71- (-1 - 1)2 + (5 - 3)2

. 11(1)2 + (-2)2 + (2)2

= tir

ST = 3

1, Find the distance from the origin (0, 0, 0) of a rectangular

coordinate system to the points in space that have the following

coordinates in that system:

(a) (3, 4, 12) (c) (-3, -4, -12)

(b) 8, -24) (d) (4, 3, 12)

2, In each of the following, the coordinates of a point P

are given in a rectangular coordinate system, First find
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the length of segment OP, then find the coordinates of the

midpoint of this segment, and finally find the length of

the segment from 0 to this midpoint.

(a) (6, 8, 24)

(b) (-3, -4, -12)

(c) (3, 4, 5)

(d) (6, 8, 10)

3. Do your findings in Exercise 2 confirm or d,lny the validity

of the midpoint formula adopted in Section 9.12? Explain

your answer,

4. Find the distance between each of the following pairs of

points:

(a) s(4, 2,

(b) P(5, -2,

(c) C(1, 3-,

(d) M(2, -1,

5. Let points A and B have coordinates (7, -3, 6) and (3, -1, 2)

respectively, .and M be the midpoint, of segment AB.

Calculate each of the following:

(a) The coordinates of M (using the midpoint formula for

space).

(b) The distances AM, MB, and AB,

(c) How do your findings in (a) and (b) confirm the

validity of the midpoint formula?

6. The vertices of AABC are A(-3, 2, 0), B(1, -2, 4), C(1, 2, -4).

Find the length of the median from vertex C to side AB,

3), T(3, 0, 1)

1), Q(1, 2, 3)

0), D(4, 1, - i)

4), N(-3, 5, 2)
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9.16 Surfaces in Space

In the previous sections of this chapter the only subsets

of space that were discussed were lines and plances and geometric

figures which are made up of intersecting and parallel lines and

planes. You are certainly familiar with many other kinds of

surfaces and solids in space -- models of spheres, cones, cylinders,

and pyramids are common sights in our three-dimensionsal world.

In order to treat these figures in the deductive structure of

geometry: they must be defined as certain kinds of point sets -

subsets of space that satisfy certain conditions.

For example, a sphere Sr, 0 is a surface with the property

that each point on the surface is a fixed distance r from a

point 0 called the center of the sphere.

Definition 7, The sphere, Sr,0 of radius r and center 0

is the set of all points Q such that this

distance from 0 to Q is r.

In a rectangular coordinate system for space, this definition implies

that if 0 is taken to be the origin (% having coordinates

(0, 0, 0), and if an arbitrary point P on the surface of Sr, 0

aving coordinates (x, y, z) is considered, the distance CP is

constant, (See Figure 9,34.)
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Using the distance formula derived in Section 9.14, we

obtain

the radius r = (IP =1/(x - 0)2 + (y - 6)2 + (2 - 0)2

x2 + y2 + z2

Consequently, Sec.= (P(x, y, z) : x2 + y2 + z2 = r2)

The interior of Sr, (P(x, y, z) : x2 + y2 + z2 < ro)

A solid sphere (or ball) is the union of a sphere and its

interior,

solid sphere Sr, !° (P(x, y, z) : x2 + y2 + z2 r2}

Example 1. In set notation, describe Ale set of points on

the, surface of a sphere with center at the

origin and with radius 5.

Since r = 5, r2 = 25, and

35,e!, = (P(x, y, z) : x2 + y* + = 25),

261
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To most of us, the word "cylinder" brings to mind tin

cans, drinking glasses, or pipes. The cylinder is one of the

easiest surfaces to visualize. The kind of cylinder which is

most common to your experience is the right circular cylinder.

If you take a circle in plane r and a line through a point on

this circle and perpendicular to r, you generate a right circular

cylinder by moving the line parallel to itself, tracing the

circle. (See Figure 9.35.)

A

Figure 9.35

The generating line his called a ggneratrlx, and the guiding

figure in ty plane, a circle in this 4se, is called a directrix.

Instead of considering the generatrix to be a moving line, sweeping

out the surface, you could alternatively consider the cylinder

to consist oY an infinite set of parallel lines. Each of these

4.v4
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lines is called an element of the right circular cylinder,the

line containing the center of the circle and parallel to the

elements is called the axis of the cylinder; and the radius of

the directrix circle is called the radius of the cylinder.

Figure 9.36 illustrates a right circular cylinder in

coordinate 3-space. In this case, the z-axis is the axis of the

cylinder. Let the radius be r.

Figure 9.36

We can think of the cylindrical surface as consisting of an

infinite stack (set) of circles, all of radius r. This suggests

that a good description of the right circular cylinder is

(P(x, y, z) : x2 + y2 = r2),
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Example 2. Describe the set of points on a right

circular cylindrical surface which has the

y-axis as the axis of the cylinder, and which

has a radius of 3 units. The general descrip-

tion of a cylinder of this type is (P(x, y, z) :

x2 + z2 = r2), Therefore, our cylinder can

be described by (P(x, y, z) : x2 + z2 = 9),

Sketch this figure,

Example 3. Describe the intersection of the cylinder of

Example 2 with the plane (P(x, y, z) : y = 5),

The intersection is simply

(P(x, y, z) : x2 + z2 = 9 and y = 5), or

(P(x, 5, t) : x2 + z2 = 9,)

The word "cane" usually brings to mind ice cream cones and

Indian wigwams. The cones of our common experience are called

right circular cones,, or sometimes cones of revolution. We can

think of these as being generated by a line (the generatrix)

which traces a circle C (the directrix) in a plane r, When

generating a right circular cone, the generatrix, in its sweep

or tracing of the directrix, passes through a point P in space,

not in r, (See Figure 9,370

Figure 9,38 shows a portion of a right circular cone in a

rectangular coordinate system. For simplicity we chose a cone

with vertex at the origin, with axis of the cone the z-axis, and

with the property that the plane z.= r intersects the cone in a

circle of radius Irl,
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Figure 9.38

x,y,r)

In this development it is convenient to consider a right

circular cone as shown in Figure 9.38 to consist of an infinite

"stack" of circles, all with planes parallel to the xy-coordinate

plane, and with varying radii, You will note that for any one

of these circles, the radius will be equal to the distance of

the plane of that circle from the xy-plane. This suggests that

a set description for this right circular is

(P(x, z) : xa + y2 = z2)

9.3.7 Exercises

1. Imagine a sphere that is cut (intersected) by a plane. What

sort of geometric figure is the set of points in the inter-

section?

2. Imagine a family of parallel planes intersecting a sphere.

Describe the relationship of the figures formed in the

intersections.

3. If P and Q are two points on a sphere, imagine the family

of planes that contain P and Q. Compare the intersections
g_ on. 1.
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4. Sketch the figure formed when a right circular cone is

intersected by a plane which does not contain the vertex

of the cone but is:

(a) perpendicular to the axis of the cone,

(b) parallel to the axis of the cone.

(c) neither perpendicular nor parallel to the axis of the

cone,

5. Sketch the figure formed when a plane intersec.i's a right

circular cylinder in case the plane is:

(a) parallel to an element of the cylinder

(b) perpendicular to an element of the cylinder

(c) neither parallel nor perpendicular to any element of

the cylinder

6. Describe the cone generated if the directrix is a line.

7. Describe the cylinder generated if the directrix is a line.

8. For each of the following surfaces, describe the figures and

make a sketch for each showing the surfaces in coordinate

3- space.

(a)

(b)

(P(x, y,

(P(x, y,

z) : xa + y2 + z2 = 1).

z) x2 + y2 + z2 = 2),

(c) (P(x, y, z) : x2 + y2 = 4) .

(d) (P(x, y, z) : y2 + z2 = 1).

(e) (P(x, y, z) : xa + z2 = 9),

(P(x, y, z) : xa + 22 = y2),

(g) (P(x, y, z) : y2 + z2 = x2),

9. Given the sphere described by (P(x, y, z) : x2 + y2 + z2 = 4).

Describe in detail and within set notation, the intersections
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of the given sphere with each of the following. Draw a

sketch for each,

(a) (P(x, y, z) : x = 1 and y = 1).

(b) (P(x, y, z) : z = 1) ,

(c) (P(x, y, z) : x2 + y2 = 4),

*(d) (P(x, y, z) : -1 y :1) .

9.18 Summary

The purpose of this chapter was to extend the study of

geometry to three - dimensional space. This involved:

(a) The study of planes as subsets of space, and of

the relations that exist among planes and lines in

space,

(b) The use of deductive logic in obtaining further

information about figures in space.

(c) Coordinatization of space.

(d) The study of planes and other common surfaces in

space.

(e) Studying the processes for obtaining description of

surfaces using set notation.

9.19 Review Exercises

1. Which of the following surfaces suggest a plane?

(a) The surface of a doughnut.

(b) The roof of Grant:s Tomb
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2. How many planes are there that contain

(a) a given point.

(b) two given points.

(c) two intersecting lines.

3. Determine which of the following statements are true and

which are false.

(a) If rdira and r211r3, then riiIrs.

(b) If r1 l r2 and r2 l r3, then 75.

(c) If e, m and n lm, then Al In.

(d) If II Iv- and ml ir, then Im.

(e) If rillr2 and r3 n ri = o, then rs intersects r2.

Find the coordinates of the midpoint of AB in case

(a) A = (1, 2, 3), B = (3, 2, 1)

(b) A = (17, 4, -3), B = (-45, -32, -12)

5. Find the distance from (0, 0,. 0) to

(a) (3, 4, 5)

(b) (-5, -12, -13)

6. Find the distance between each of the following pairs of

points in space:

(a) (5, 3, 2), (2, 3, -2)

(b) (6, -1, -5), (-6, 4, -5)

(c) (4, 3, 0), (-2, 0, 6)

7. Sketch the following planes in coordinate 3-space.

(a) (P(x, y, z) : z = 1).

(b) (P(x, y, z) : x = -2).

(c) (P(x, y, z) : y = 3).

fAi7.68
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8. (a) Sketch the sphere described by (P(x, y, z) :

x2 + y2 + z2 = 9).

(b) If the points on the sphere were translated according

to the rule (x, y, z) --+ (x 1, y - 2, z - 3),

would the resulting surface be a sphere? Why?

(c) Sketch the sphere resulting from translating the

sphere in (a) according to the translation rule in

(b),

(d) From what you have observed in the first three parts

of this exercise, describe the set

(P(x, y, z) : (x - 2)a + (y 1)2 + (z - 3)2 = 4),

269
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